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1 Details of Full Sample Estimation

To perform full sample estimation with known break dates, I use an independent Normal-

Inverse Gamma prior. That is, I assume:

p(β, σ2
1, σ

2
2, σ

2
3) = p(β)p(σ2

1)p(σ2
2)p(σ2

3)

I assume that p(β) follows a normal distribution, so that:

β ∼ N(0, Vpri)

I assume that p(σ2
1), p(σ2

2), and p(σ2
3) follow independent inverse-gamma distributions, so

that:

σ2
1 ∼ IG(α1,pri, β1,pri)

σ2
2 ∼ IG(α2,pri, β2,pri)

σ2
3 ∼ IG(α3,pri, β3,pri)

Due to the fact that there are two known break dates, it will be helpful to partition the

∗I can be contacted at ajc@uoregon.edu

1



X matrix and Y vector into three blocks. That is,

X = [X1 X2 X3]
′

Y = [Y1 Y2 Y3]
′

where X1 contains all variables in X between the start date at the first break date, X2

contains all variables in X between the first break date and the second break date, and X3

contains all variables in X following the second break date, and likewise for Y1, Y2, and Y3.

Because there are three variance regimes, it will also be helpful to define transformations

of X and Xi for i = 1, 2, 3. Let Σ be a vector of length T that holds the variance parameter

corresponding to each time period. That is, Σi = [σ2
i ι
′
Ti

]′ for i = 1, 2, 3, where ιTi is a vector of

ones of length Ti, which is the number of periods that the ith regime is in place. To construct

Σ, we stack these partitions [Σ′1Σ
′
2Σ
′
3]
′. Then, we define Xi,σ as Xi divided element-wise by

√
Σi, and Xσ as X divided element-wise by

√
Σ.

Given the priors, the kernel of the unconditional posterior distributions do not correspond

to known distributions. However, as shown in Koop (2003), chapter 4, the kernels of the

conditional posterior distributions do correspond to known distributions. Working through

the algebra, we find:

p(β|X, Y, σ2
1, σ

2
2, σ

2
3) ∝ exp

[
−1

2
(β − βpost)′Vpost(β − βpost)

]

i.e. (β|X, Y, σ2
1, σ

2
2, σ

2
3) ∼ N(βpost, Vpost) where

Vpost = (V −1pri +X ′σXσ)−1

βpost = Vpost(V
−1
pri βpri +X ′σY )
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The kernel of the conditional posterior distribution for σ2
i is given by:

p(σ2
i |X, Y, β) ∝ β

αi,post

i,post (σ2
i )
−α−1 exp

(
−βi,post
σ2
i

)

for i = 1, 2, 3. Therefore, we have (σ2
i |X, Y, β) ∼ IG(αi,post, βi,post) where:

αi,post = αi,pri +
Ti
2

βi,post = βi,pri +
(Yi −Xi,σβ)′(Yi −Xi,σβ)

2

Summarizing, we have two blocks of parameters:

(β|X, Y, σ2
1, σ

2
2, σ

2
3) ∼ N(βpost, Vpost)

(σ2
i |X, Y, β) ∼ IG(αi,post, βi,post)

In order to perform inference, I utilize the Gibbs sampler. To initialize the sampler, I set

β = β(0)

σ2
1 = σ

2,(0)
1

σ2
2 = σ

2,(0)
2

σ2
3 = σ

2,(0)
3

Then, I perform the following steps G0 + G times, where the first G0 draws serve as

burn-in, and the next G are used for inference:

1. Draw (β(j)|X, Y, σ2,(j−1)
1 , σ

2,(j−1)
2 , σ

2,(j−1)
3 ) ∼ N(βpost, Vpost).

2. Draw (σ
2,(j)
i |X, Y, β(j)) ∼ IG(αi,post, βi,post) for i = 1, 2, 3

Running the Gibbs sampler simulates from the posterior distribution. We can then use these

Note that in the limit, as |Vpri| → ∞ and βpri → 0, the mean of βpost → (X ′σXσ)
−1X ′σY
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posterior draws to compute most posterior features of interest, such as the central tendency

of the parameter values or the central tendency or credible intervals for the fitted values, Ŷ .

Because I am interested in model comparison, I also need to compute a measure of

how well the model fits the data, for each model that I consider. As in most Bayesian

model comparison exercises, I use the marginal likelihood for each model. Due to the use

of priors that admit only conditionally conjugate posterior distributions, this value cannot

be calculated analytically, and instead needs to be approximated. Using Bayes’ rule, the

marginal likelihood can be written in terms of the following decomposition:

p(θ|y) =
p(Y |θ)p(θ)
p(Y )

⇒ p(Y ) =
p(Y |θ)p(θ)
p(θ|Y )

where p(Y ) is the marginal likelihood, θ is the vector of parameters of the model, p(Y |θ) is

the likelihood, p(θ) is the prior, and p(θ|Y ) is the posterior. Since the marginal likelihood is

unconditional with respect to the value of the parameter vector, we can plug in any value,

θ = θ∗, to evaluate the expression:

p(Y ) =
p(Y |θ∗)p(θ∗)
p(θ∗|Y )

In our case, we know the analytic expressions for the prior and the likelihood function, so

the values of p(Y |θ∗) and p(θ∗) can be computed analytically at any value of θ∗. However, as

discussed earlier, we do not know the analytical form of the posterior distribution, p(θ|Y ).

Therefore, this value is approximated. First, I decompose the parameter vector into two

blocks, θ = [θ1 θ2], with θ1 = β and θ2 = [σ2
1 σ

2
2 σ

2
3]′, and write the posterior as p(θ1, θ2|Y ) =

p(θ1|Y )p(θ2|Y, θ1). Then, I approximate p(θ∗1|Y ) and p(θ∗2|Y, θ∗1) using the following steps

adapted from the procedure in Chib (1995):

1. Set θ1 = θ∗1 = β∗, where β∗ is the posterior median of β computed from the output of
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the Gibbs sampler.

2. Compute p(β∗|Y ) ≈ 1
G

∑G
j=1 p(β

∗|Y, σ2,(j)
1 σ

2,(j)
2 σ

2,(j)
3 )

3. Set θ2 = θ∗2 = [σ2,∗
1 σ2,∗

2 σ2,∗
3 ]′, where σ2,∗

i is the posterior median of σ2
i computed from

the output of the Gibbs sampler.

4. Compute p(θ∗2|Y, θ∗1) =
∏3

i=1 p(σ
2,∗
i |Y, β∗).

5. Compute p(θ∗|Y ) = p(θ∗1, θ
∗
2|Y ) = p(θ∗1|Y )p(θ∗2|Y, θ∗1).

Since I have analytical expressions for p(θ∗) and p(Y |θ∗), after completing this process I have

all I need to compute the marginal likelihood.

Summarizing the complete process:

1. Choose a model, Mr from the feasible set that has not yet been chosen.

2. Set priors in this model according to a version of the g-prior adapted to the independent

Normal-Inverse Gamma prior.

3. Draw from the posterior distributions by using the Gibbs Sampler.

4. Compute the marginal likelihood for model Mr, p(Y |Mr), by using the method of Chib

(1995) to approximate the posterior likelihood, p(θ∗|Y,Mr).

5. Repeat steps 1-4 2p times, where p is the number of potentially included variables.

6. Compute the relative model probabilities using:

p(Mr) ∝ p(Y |Mr)p(Mr)

where p(Mr) is the prior probability of model Mr. This simplifies to p(Mr) ∝ p(Y |Mr)

in my baseline estimation, which assumes equal prior probability on each model.
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2 Details of Estimation used in Forecasting Exercise

For forecasting, I only use the post-1983 sample. Therefore, I assume that there are no

structural breaks. Because there are no structural breaks, I can use the natural conjugate

prior for the linear regression model. This procedure is standard, and no longer requires any

simulation, as all distributions, including the posterior, take known analytic forms. Analysis

in this model is standard, and full details can be found in chapter 11 of Koop (2003)1

1There are errata in some of the formulae provided in the text, corrections can be found at
http://www.wiley.com/legacy/wileychi/koopbayesian/
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