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Abstract

When studying the Federal Open Market Committee’s (FOMC’s) interest rate rule,
some authors, such as Gonzalez-Astudillo (2018), find evidence for changes in inflation
and output gap responses. Others, such as Sims and Zha (2006), only find evidence
for a change in the variance of the interest rate rule. In this paper, I develop a new
two-regime Markov-switching model that probabilistically performs variable selection
and identification of parameter change for each variable in the model. I find substantial
evidence that there have been changes in the response to unemployment and in the
volatility of the rule. When the FOMC responds strongly to the unemployment, I find
a bi-modal density for the inflation response coefficient. Despite the bi-modal density,
there is a low probability that there have been changes in the FOMC’s response to
inflation.

Keywords: Monetary Policy, Interest Rate Rule, Markov-switching, Model Averaging
JEL Codes: C22, C24, C51, C52, E52
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1 Introduction

The modern view of monetary policy is that the Federal Open Market Committee

(FOMC) adjusts the Federal Funds rate based on measures of economic performance. Math-

ematically, this is typically formulated as a version of the the Taylor Rule, first described in

Taylor (1993), in which the target nominal Federal Funds rate is a linear function of output

and inflation. This policy rule, and others taking very similar forms, are the foundation of

the past two decades of empirical analysis of historical FOMC behavior.

Many researchers allow for the possibility that the coefficients of the policy rule change

over time. In part, this is due to observed macroeconomic variables such as inflation chang-

ing substantially over time, suggesting possible changes in FOMC priorities. Additionally,

narrative approaches such as Romer and Romer (2004) have found systematic differences

in policy implementation under different Federal Reserve chairs, and text analysis such as

that performed in Kaya et al. (2019) have found that the topics of discussion at the FOMC

meetings have shifted over time. The possibility of changing coefficients in the policy rule

has been modeled many different ways, many different measures of inflation, output, and

employment have been used when estimating the policy rule, and many different time sam-

ples have been used. This has lead to a proliferation of results, with four different findings

appearing commonly in this literature:

1. The FOMC’s inflation response has changed over time, becoming more aggressive

against inflation after the appointment of Paul Volker in 1979 (e.g. Clarida et al.

(2000)).

2. The FOMC’s output response has changed over time, becoming less responsive to

changes in the output gap after the 1970’s (e.g. Orphanides (2004)).

3. The FOMC’s inflation and output response have both changed over time, typically

according to the patterns identified in (1) and (2) (e.g. Gonzalez-Astudillo (2018)).
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4. The coefficients of the FOMC’s interest rate rule have not changed over time, but the

variance has (e.g. Sims and Zha (2006)).

Addressing the nature and timing of structural change in FOMC behavior is of importance

to both academics and policymakers. In many different types of DSGE models, coefficients

in the interest rate rule help to determine inflation volatility and persistence, as well as

short-term output growth rates and volatility. If monetary policy in the United States has

changed, it is crucial that we document how, as it will eventually allow us to attribute

changes in economic performance to changes in policy. This is especially important in light

of the claim made by Taylor (2013) that a weak inflation response returned in the mid-2000s

and engendered the housing bubble.

While the early papers in this literature such as Clarida et al. (2000) and Orphanides

(2004) used split-sample regressions to model possible coefficient change, later work has

used models explicitly designed to detect structural change. Some authors have used a time-

varying parameter model, allowing the interest rate rule parameters to slowly change over

time.1 In more recent work, it has been common to model changes in the FOMC’s interest

rate rule as a Markov-Switching model.2 However, the exact nature and timing of coefficient

change is disputed, with many of these studies using different specifications of the interest

rate rule, different time periods, or different information sets. In addition, in some studies

such as Bennani et al. (2018) and Gonzalez-Astudillo (2018), the authors have searched for

parsimonious models by “pre-testing” — performing frequentist testing of coefficient con-

stancy in an unrestricted Markov-switching model, and then re-estimating a smaller model

with a subset of coefficients restricted to be identical across regimes. Other studies, such as

Murray et al. (2015), have simply estimated the unrestricted Markov-switching model.

The contribution of the current paper to this literature is threefold. First, I develop a

new two-regime Markov-Switching model that endogenously determines whether variables

1Examples include Boivin (2006), Kim and Nelson (2006), and Primiceri (2005). A somewhat different
approach that also allows the FOMC to shift its policy horizon is considered in Lee et al. (2015).

2Examples include Soques (2019), Bennani et al. (2018), Gonzalez-Astudillo (2018), Alba and Wang
(2017), Murray et al. (2015), Castelnuovo et al. (2014), Bianchi (2013), and Davig and Leeper (2011).
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belong in a regression and if so, whether they switch across regimes. Second, I document

substantial evidence of parameter change in the volatility of the interest rate rule and in the

FOMC’s response to the unemployment gap. Third, I find that there is little-to-no evidence

of parameter change in any of the other coefficients of the model: the intercept, the degree of

interest rate smoothing, the response to the inflation gap, or the response to the response to

the change in the unemployment rate. However, I do find evidence of a bi-modal density for

the inflation response coefficient in one regime, which highlights the importance of averaging

over different specifications rather than estimating a single Markov-Switching model.

In this paper, I introduce a novel Bayesian econometric model that is able to proba-

bilistically determine the specification of the FOMC’s interest rate rule in the presence of

a two-regime Markov-Switching process. This Markov-Switching Stochastic Search Variable

Selection (MS-SSVS) model nests both a constant coefficient model, consistent with the find-

ings of Sims and Zha (2006), and a full Markov-Switching model, consistent with Murray

et al. (2015) as special cases. In addition, the MS-SSVS model can probabilistically restrict

a subset of coefficients to remain constant across regimes, nesting FOMC behavior like that

identified by Orphanides (2004), Bennani et al. (2018), or Gonzalez-Astudillo (2018) where

only a subset of coefficients change over time. The MS-SSVS model can also restrict co-

efficients in either one or both regimes to be zero, so that a variable may be completely

excluded from the regression in either one regime or in both regimes. In short, for each

coefficient in each regime, there are three possibilities: (1) the coefficient is restricted to

zero; (2) the coefficient is restricted to be the same as the coefficient in the other regime; (3)

the coefficient is freely estimated independently of the coefficient in the other regime. The

restrictions and coefficients are estimated at the same time in a unified model, which avoids

pre-testing and makes the estimated coefficients easily interpretable.3 In addition, MS-SSVS

averages over the uncertainty associated with model choice, so rather than only estimating

a final “best” model, inference is performed by weighing estimates across models according

3See Giles and Giles (1993) for an overview of some of the problems associated with pre-testing.
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to their posterior probabilities.

The MS-SSVS model builds on the work of George and McCulloch (1993) and George

et al. (2008), who developed Stochastic Search Variable Selection (SSVS) in order to perform

variable selection in linear regression models and linear Vector Autoregressions (VARs).4

SSVS has some differences with competing methodologies such as Bayesian Model Averaging

(BMA) that make it especially attractive in a Markov-Switching environment. One major

advantage of SSVS is that it is not necessary to directly compute or approximate the marginal

likelihood, which is a computationally intensive task in Markov-Switching models. Instead,

the uncertainty associated with variable inclusion and variable switching is nested within a

unified hierarchical model.

Using Monte-Carlo exercises with simulated data, I show that the newly developed MS-

SSVS model is able to correctly identify when coefficients should be freely estimated and

when they should be restricted — this is true both when the actual coefficients are zero, and

when the coefficients are the same across regimes. As expected, the MS-SSVS model is better

able to identify coefficient restrictions as the signal to noise ratio increases. This increase

in signal is modeled in two ways, either as a reduction in error volatility or as an increase

in sample size. The MS-SSVS model is particularly adept at identifying linear cross-regime

restrictions with a high degree of accuracy, even as the amount of noise increases.

When I apply this new methodology to Federal Funds Rate data from 1970-2007, I find

three things. First, I find evidence for two distinct regimes in the unemployment gap response

coefficient. I find that there was a relatively strong unemployment gap response coefficient

in the mid 1970s, the late 1980s and early 1990s, and between 2004-2006, with the weakest

unemployment response coming during the leadership of Paul Volcker. Second, I find that

the point-estimates of the other parameters in the rule are roughly constant, regardless of

regime. This includes the FOMC’s response to inflation, although I do find that the density

4SSVS restrictions are also utilized in Koop and Korobilis (2018), who allow for parameter restrictions
in time-varying parameter models. The more general class of priors of this type is called “spike and slab”
priors.
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of the inflation response coefficient is bi-modal in the strong unemployment response regime.

Finally, similar to Sims and Zha (2006), I find strong evidence of changes in the volatility of

the Federal Funds rate.

I also consider an extension with a sample from 1970-2015, since 2015 is the last year

for which FOMC Greenbook forecasts are currently available. This extension introduces the

period covering the zero-lower-bound (ZLB) episode during and after the Great Recession,

which lasted from 2008-2015. In order to avoid econometric issues that arise when using

a censored dependent variable, for the period 2008-2015 I replace the Federal Funds rate

with an estimate of the shadow rate from Johannsen and Mertens (2021). The results are

qualitatively similar to those described above. However, the model now prefers shifts in

both the FOMC’s response to the change in unemployment and the unemployment gap. For

the period 2008-2015, I find a high probability that the FOMC was responding relatively

weakly to the change in the unemployment rate, instead putting relatively more emphasis

on changes in the inflation gap. This makes intuitive sense, as the unemployment rate was

steadily decreasing over this period, but inflation remained persistently below target.

2 Previous Studies of the FOMC Interest Rate Rule

In an attempt to distill previous findings on changes in the FOMC’s interest rate rule,

I have grouped papers according to their main conclusion as it relates to monetary policy.

Broadly speaking, these papers typically fall into one of four categories:

1. The FOMC’s inflation response has changed over time, but the output response has

not.

2. The FOMC’s output response has changed over time, but the inflation response has

not.

3. The FOMC’s inflation and output response have both changed over time.
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4. None of the coefficients of the FOMC’s interest rate rule have changed over time, but

the variance has.

The findings of some recent and well-known studies of the FOMC’s interest rate rule are

highlighted in Table 1. This table is not meant to be an exhaustive list of all papers in

this strand of literature, but instead it is meant to provide enough examples that the reader

can get a sense of the types of differences seen across studies. In some of these studies, the

findings are more subtle; for instance, Boivin (2006) finds that the point-estimates of both

the output and inflation response coefficients change substantially over time, but that the

confidence interval at any given point in time is very wide. In ambiguous cases like this I

did my best to summarize the author’s views about their findings.

[Table 1 about here]

From Table 1, we see that conclusions about changes in the policy rule are mixed. For ex-

ample, two papers find strong evidence for changes in the interest rate smoothing parameter,

while other papers find weak or no evidence for changes in this parameter. In many papers,

the exact variables used (e.g. output gap vs. unemployment gap) affect the results, even

when the methodology is the same. Furthermore, even when two papers find that the same

parameter switched, the qualitative conclusions could differ. For instance, Clarida et al.

(2000) and Alba and Wang (2017) both find evidence that the FOMC’s inflation response

has changed over time. However Clarida et al. (2000) find that the Taylor principle was likely

not satisfied during the 1970’s, while Alba and Wang (2017) find that the Taylor principle

was always satisfied.

The source of the conflicting results is unclear. Bae et al. (2012) explored this issue

within Chib’s (1998) model of structural breaks, with their main area of interest being

distinguishing the importance of sample start date and the use of real-time data. With a

sample that begins in 1960, similar to the sample used by Clarida et al. (2000), they find that

there was an abrupt increase in the inflation response coefficient in 1968, with the pre-1968
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regime not satisfying the Taylor principle, but the 1968-1979 regime doing so. Since the

sample in Orphanides (2004) begins in 1966, Bae et al. (2012) attribute the higher inflation

response found by Orphanides (2004) to the sample start date rather than the use of real-time

data. However, they did not consider all possible sources of difference between prior studies,

as they did not analyze the impact of using monthly or quarterly data, or the impact of using

different modeling techniques. While fully addressing the cause of the discrepancy in results

among previous studies is beyond the scope of the current paper, I aim to shed light on

the impact of modeling assumptions made within regime-switching models in this literature.

Namely, I develop a model that takes uncertainty about the nature of regime-switching in

each coefficient into account.

3 Data and Model Outline

For simplicity, I will first proceed as if the fully unrestricted Markov-switching model is

being estimated. In that case, the model set-up is similar to others in the recent literature:

it = µst + ρstit−1 + φπst (π
e
t − πTt ) + φustu

e
t + φ∆ust

∆uet + σtεt

st ∈ {0, 1}

P (st = j|st−1 = i) = qij

εt ∼ N(0, 1)

where it is the nominal Federal Funds rate in period t, πet is the average three-quarter-ahead

expected inflation rate at time t, πT is the FOMC’s inflation target estimated by Chan et al.

(2013), uet is the average three-quarter-ahead expected unemployment gap at time t, and

∆uet is the total expected change in the unemployment rate between time t and time t + 3,

and qij is the transition probability between regime i and regime j.

Finally, I assume that the volatility of the error term follows a random walk (i.e. the
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model exhibits “stochastic volatility”). Let σt = exp(ht
2

). Then:

ht = ht−1 + vt

vt ∼ N(0, Q)

There are a few differences between the model above and some of the other models in

the literature. First, while most papers have included interest rate smoothing (ρstit−1), not

all have.5 Second, most papers in the literature use a measure of the output gap rather than

the unemployment rate. However, as argued in Kozicki and Tinsley (2006) and Kozicki and

Tinsley (2009), the historical narrative evidence from the 1970’s and 1980’s is much more

consistent with a FOMC that responded to unemployment rather than output. In addition,

Kozicki and Tinsley (2009) note that the Federal Funds rate target may depend on changes

in real activity rather than (or in addition to) gaps in real activity. Therefore I include

measures of both the real-time unemployment gap and the change in the unemployment

rate. Since the MS-SSVS model performs variable selection, the model should be able to

identify if one or more of these variables does not belong in the policy rule.6

In addition to differences in data and timing, I believe that the use of a stochastic volatility

process is unique in the single-equation interest rate rule literature.7 Since the main focus

of this study is to identify possible change in coefficient values, it is important to allow

the variance to evolve separately from the coefficient regimes. If the regimes covered both

the coefficients as well as the variance, relatively large changes in the variance could drive

the estimated regimes, which would then mainly identify periods of high and low volatility,

5For example, Alba and Wang (2017) does not allow for interest rate smoothing.
6Additionally, since I am using three-quarter-ahead forecasts from the Greenbook, if I were to use the

output gap instead of the unemployment gap, I would need estimates of the FOMC’s beliefs about both the
level and growth rate of potential output. Constructing real-time estimates of both the level and growth
rate of potential output that was available to the FOMC at the time of their decisions is non-trivial. These
were typically not published in the Greenbook, and estimates of both output and potential output tend to
be heavily revised relative to the much smaller revisions in the unemployment rate, which typically only
occur if there are changes in the estimated seasonal factors.

7Primiceri (2005) allowed for stochastic volatility in a VAR set-up.
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rather than identifying changes in coefficients. While modeling the variance as a separate

regime switching process would also break this link, identifying variance regimes is not the

main focus of the study, and stochastic volatility is robust to different types of parameter

change.8

The data is recorded at each FOMC meeting and is gathered from historical FOMC

Greenbooks. For inflation I use the relevant GNP or GDP Deflator inflation. I use “meeting-

based timing”, developed in Check (2019), in which the Federal Funds rate is averaged

between meeting dates. In the baseline estimation, I assume a constant natural rate of

unemployment and I use the methodology of Chan et al. (2013) to estimate the inflation

target, using GDP Deflator data.9 In baseline estimation, I restrict the sample from late 1969

through the end of 2007. The start date coincides with when the FOMC began regularly

reporting three-quarter-ahead forecasts, and the end date is chosen to avoid the zero-lower-

bound.10 In an extended sample that goes through 2015, I instead replace the Federal Funds

rate with an estimate of the shadow rate.

The choice of FOMC Greenbook data is consequential, as it helps avoid possible endo-

geneity but limits the available sample. In the standard Taylor rule framework, there is an

endogeneity concern — while the FOMC adjusts the Federal Funds rate based on changes in

macroeconomic variables such as inflation and unemployment, these variables also respond

to changes, or expected changes, in the Federal Funds rate. However, since the Greenbook

forecasts are created prior to each FOMC meeting under the assumption of no change in the

Federal Funds rate at that meeting, the endogeneity concern is greatly alleviated. In other

8While policy changes by the FOMC may impact the volatility of a monetary policy rule, it is also likely
impacted by structural changes in the banking system and policy implementation. Changes in volatility are
therefore less likely to be well described by a two-regime Markov-Switching process.

9In a robustness exercise presented in Appendix C, I explore alternative assumptions concerning the
natural rate of unemployment and inflation target.

10While using an averaged three-quarter-ahead forecast is somewhat non-standard in this literature, its
choice was a practical one. The FOMC Greenbook started regularly providing three-quarter-ahead forecasts
in the 1970’s, but did not regularly provide four-quarter-ahead forecasts until the 1980’s. In addition,
averaging the forecasts through three-quarters-ahead has the effect of dampening the impact of shocks that
are expected to be transitory. Intuitively, the FOMC would probably not want to respond to shocks they
expect to be transitory, given that monetary policy impacts the economy with a lag.

12



words, the forecasts may cause the FOMC to adjust the Federal Funds rate, but the potential

for a Federal Funds rate adjustment is ignored when the forecasts are created, breaking the

link of possible endogeneity. This feature of the Greenbook forecasts was summarized nicely

by Romer and Romer (2004),

“The Greenbook forecast is almost always predicated on the assumption of no
change in monetary policy in the very short run, where the very short run means
at least until the FOMC meeting after the one for which the forecast is being
made. This characteristic, along with the usual assumption of some lag in the
effects of monetary policy, makes it unlikely that forecasts zero, one, and two
quarters ahead are contaminated by assumptions or inside information about
the course of monetary policy. As a result, these near-term forecasts provide
information about what the Federal Reserve expected to happen to the economy
in the absence of changes in monetary policy.”

For this reason, along with the fact that Greenbook data provides insights into the real-

time information available to the FOMC at the time of their decisions, use of Greenbook

data is popular in this literature. In studies that specifically investigate endogeneity in

these types of regressions, Coibion and Gorodnichenko (2011) use Greenbook data and find

support for standard OLS rather than IV estimation, and Carvalho et al. (2019) use OLS

with non-Greenbook data as an example of a regression that may suffer from endogeneity,

and then compare this to OLS using Greenbook data which they argue should not suffer

from endogeneity.

While the benefit of the Greenbook data is that it breaks the endogeneity link, a major

drawback is that it is released with a five-year lag. As of writing, this limits the potential

sample to the end of 2015, which covers a portion of the zero-lower-bound episode but does

not cover the more recent liftoff period. In my main results, I limit the sample through

the end of 2007 to avoid the period of the zero-lower-bound. In a robustness exercise, I

extend my sample, replacing the Federal Funds rate with the shadow rate of Johannsen and

Mertens’s (2021). This shadow rate is produced at a quarterly frequency, so I am unable to

map this directly into the meeting-based-timing used in my baseline results. Nevertheless,

the results of this extension are qualitatively similar to the results for the 1970-2007 period.
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4 Full Econometric Model

The model I introduce is based on a Markov-Switching model with switching in coeffi-

cients:

yt = XtβSt + εt

εt ∼ N(0, σ2)

St ∈ {0, 1}

The regime, St follows a first order Markov process:

Pr(St = j|St−1 = i) = qij

i, j ∈ {0, 1}

The model as detailed above has been well studied, and there exist well known frequentist

and Bayesian procedures to estimate it. These methods are described in Hamilton (1989),

Kim and Nelson (1999), Frühwirth-Schnatter (2006), and Piger (2009), among others. While

these techniques make it feasible to estimate the model, model comparison remains relatively

cumbersome. The estimation process itself can be time consuming, making the estimation of

more than a handful of models potentially infeasible. This problem is only exacerbated when

performing Bayesian Model Averaging, as this requires estimation of the marginal likelihood

of each model — this is an extra, complicated, and time consuming step that needs to be

undertaken after estimation of the model.11 Finally, the total number of models to consider

grows more rapidly in this class of models than in linear models. In linear models, there

are only two possibilities for each regressor — either it belongs in the model or it does not.

However, in a Markov-switching model with two regimes, there are five possibilities for each

11Additionally, some authors such as Kruschke (2015) argue against using the marginal likelihood for
model comparison due to its high sensitivity to parameter priors. This problem was originally pointed out
in Jeffreys (1939) and received more attention after Lindley (1957) named it a “paradox.”
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regressor: (1) it does not belong in either regime, (2) it belongs in each regime, and the true

effect is distinct under each regime, (3) it belongs in each regime but the true effect is the

same regardless of regime, (4) the variable belongs in the first regime but not the second,

or (5) the variable belongs in the second regime but not the first. This only increases the

burden of model comparison, as the number of models to consider expands more rapidly

when the possibility of switching is properly accounted for.

Despite the numerical difficulties with marginal likelihood calculations, model comparison

in this class of models remains important. In this paper, I build an econometric model that

allows for the five possibilities described above. It does so in a computationally feasible

manner by utilizing a hierarchical prior to nest all of these possibilities within a single model.

To do this, I build on Stochastic Search Variable Selection (SSVS), which was developed in

George and McCulloch (1993) and further studied and implemented in George et al. (2008)

and Koop and Korobilis (2010). In SSVS, a mixture distribution of Normal priors is used on

the regression coefficients to allow researchers to place prior weight on the possibility that the

coefficient may be exactly equal to zero (i.e. that the variable does not belong in the model).

This prior impacts the model likelihood and allows the data to inform whether the variable

belongs in the model. Since variable selection is built into the model likelihood, only one

model needs to be estimated. This framework is therefore simpler and more efficient than

performing Bayesian model averaging by estimating hundreds, thousands, or more models

and then comparing them based on their marginal likelihoods.

To help elicit the mathematical details of this model, let βk = [βk,i βk,j] be a vector that

contains coefficient k in regime i and regime j. Under the MS-SSVS model the prior p(βk)

is assumed to be a mixture of Normal distributions with ` = 5 components:
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βk ∼ γk,1N


0

0

 , τ0

1 0

0 1


+ γk,2N


0

0

 , τ1

1 0

0 1


+ γk,3N


β̂k,OLS
β̂k,OLS

 , τ1

 1 1− ε

1− ε 1




+ γk,4N


0

0

 ,
τ1 0

0 τ0


+ γk,5N


0

0

 ,
τ0 0

0 τ1




γk = (γk1 , γ
k
2 , γ

k
3 , γ

k
4 , γ

k
5 ) ∈ {(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)}

τ0 = 0.1×
√

Var
(
β̂k,OLS

)
τ1 = 15×

√
Var
(
β̂k,OLS

)

where β̂k,OLS is the OLS estimate of βk under the assumption of no regime-switching,

Var
(
β̂k,OLS

)
is the OLS estimate of the variance, and τ0, τ1, and ε are parameters cho-

sen by the researcher that control the variances of each distribution in the prior.12

The mixture distribution described above represents five distinct possibilities:

1. The coefficient is restricted to be approximately zero in each regime, i.e. the variable

is excluded in both regimes.

2. The coefficient estimates are freely estimated, independently of each other, i.e. the

variable is included in each regime, and the effect in each regime is different.

3. The coefficient estimates are freely estimated, but identical, i.e. the variable is included

in each regime, and the effect in each regime is the same.

4. The coefficient in regime 0 is freely estimated, but the coefficient in regime 1 is restricted

to be near zero, i.e. the variable is excluded from regime 1.

12The choices of τ0, τ1, and ε are similar in spirit to Bayesian linear regression, where the researcher
typically chooses the variance of the prior distribution for the regression coefficients. Note that SSVS models
are not technically fully Bayesian since they rely on the data to inform the priors. This can be avoided by
running OLS on a pre-sample of data and using those pre-sample estimates instead. In addition, in SSVS,
model restrictions can only be enforced approximately. For more details, see the Technical Appendix.
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5. The coefficient in regime 1 is freely estimated, but the coefficient in regime 0 is restricted

to be near zero, i.e. the variable is excluded from regime 0.

For the coefficient on each variable, the prior distribution over the five indicator vectors,

γk, I assume that each comes from the following Categorical distribution:

γk =



(1, 0, 0, 0, 0) with probability pk,1

(0, 1, 0, 0, 0) with probability pk,2

(0, 0, 1, 0, 0) with probability pk,3

(0, 0, 0, 1, 0) with probability pk,4

(0, 0, 0, 0, 1) with probability pk,5

5∑
`=1

pk,` = 1

0 < pk,` < 1 ∀ ` ∈ {1, 2, 3, 4, 5}

where each prior mixture probability, pk,`, is a fixed constant set by the researcher, and the

prior probabilities can differ across different coefficients, k. Once a researcher has set the

five relevant prior probabilities, this Categorical distribution is a valid discrete distribution

over the indicator vectors representing the mixture components.13

In many cases, researchers may not be interested in exactly which of these five distribu-

tions is most probable. Instead, they may be interested in some type of combination of these

five distributions. For example, in some applications, for each parameter in each regime,

they may be interested instead in three possibilities: (1) the parameter is restricted to zero,

(2) the parameter is freely estimated, (3) the parameter is non-zero but restricted to be

identical to the parameter estimate in the other regime. These could be found by combin-

ing the relevant probabilities of the Categorical distribution. For example, in regime 0, the

probability of parameter k being restricted to zero is pk,1 + pk,5, since pk,1 is the probability

of the coefficient being zero in both regimes and pk,5 is the probability of the coefficient being

13For more details on the exact estimation procedure, please refer to the Technical Appendix.
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zero in regime 0 but non-zero in regime 1.

5 Monte-Carlo Analysis

To test the power of this procedure to identify coefficient restrictions, I perform a Monte-

Carlo analysis. I consider two data generating processes (DGPs): one in which data is

generated from a process that has several types of restrictions, and another that corresponds

to linear regression. The first Monte-Carlo exercise is analogous to a situation in which some

parameters in the Taylor rule switch, some remain constant across regimes, and others are

zero in both regimes. The second Monte-Carlo exercise is analogous to a situation in which

the Taylor rule variables are correctly specified, but that there is actually no switching —

the parameter values are all identical across regimes.

In both cases, the true model can be written in matrix notation as:

yt = XtβSt + εt

εt ∼ N(0, σ2)

Pr(St = j|St−1 = i) = qij

I assume that there is an intercept and two independent regressors with mean zero:

Xt =

[
1 X2,t X3,t

]
X2,t

X3,t

 ∼ N

0

0

 ,
1 0

0 1




Since there are three columns in Xt, K = 3. Recall that the pair of coefficients multiplying

the variable k but under regime 0 and regime 1 is given by βk = [βk,0 βk,1]′ for k ∈ {1, · · · , K}.
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5.1 DGP 1: Restricted Coefficients and Markov-Switching

For the first Monte-Carlo exercise, I assume that the intercept is different in each regime,

the coefficient on the first regressor is identical across regimes, and the coefficient on the

second regressor is zero in both regimes. This set-up is analogous to a situation where, for

example, the real interest rate switches, the FOMC has the same response to inflation (x1)

across regimes, but does not respond to the output gap (x2) in either regime. As defined

above, we have:

β1 =

 1.0

−0.5

 β2 =

1.0

1.0

 β3 =

0.0

0.0


Finally, the transition probabilities for each regime are given by:

P =

q00 q01

q10 q11

 =

0.8 0.2

0.3 0.7


which implies that the system will spend roughly 60% of time periods in regime 0 and 40%

of time periods in regime 1.

5.1.1 Priors

In this exercise, I assume that the variance term is constant. Therefore, I set an inverse-

Gamma prior on the variance term. The priors are are presented in Table 2.

[Table 2 about here]

5.1.2 Results

In the Monte-Carlo exercise, I vary both the number of observations, T , and the standard

deviation of the error term, σ. I consider T ∈ {50, 100, 150, 200, 250} and σ ∈ {0.1, 0.5, 1.0}.
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Models estimated on DGPs with large T and small σ are most able to pick out the correct

restrictions, as these models have the largest sample size and smallest variance.

In Tables 3-5, I present the average accuracy of identification of the correct restriction

by the estimation procedure. This number has been averaged over the results across 200

separate data generation and estimation procedures. For example, for the first column of

table (2), I set σ = 0.1 and T = 50. I then generate 200 data sets and run the estimation

procedure on each. For each data set, I calculate the percentage of draws in which the

appropriate restriction was chosen, and I average this percentage across all 200 data sets.

For the estimation procedure, I use 15,000 burn-in draws and 20,000 posterior draws.

[Table 3 about here]

[Table 4 about here]

[Table 5 about here]

Three things become apparent when looking at these Tables 3-5. First, the MS-SSVS

model is able to correctly identify all types of restrictions when the data has a high signal

to noise ratio. This shows that the estimation procedure is well-behaved when the amount

of noise in the data generating process is relatively small. Second, the model performs very

well at detecting the linear regression restriction, β2,0 = β2,1, and fairly well at detection

of the zero-restriction for the coefficients β3,0 and β3,1. Third, as the noise increases, the

model has a relatively more difficult time detecting that β1,1 is actually different than zero

compared to β1,0. This is likely due to the fact that the absolute value of β1,1 is smaller than

the absolute value of β1,0.

5.2 DGP 2: Linear Model with no switching

I repeat the same exercise as above, except I change the true value of the coefficients so

that all regressors belong in the model, the effect is different than zero for all regressors, and
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the effect is the same in both regimes for all regressors. This corresponds to linear regression

in which there is no misspecification — all the variables included in the model have a non-

zero effect, and there are no excluded relevant variables. This set-up is analogous a situation

in which the Taylor rule was correctly specified and there was no parameter change over

time, similar to what was found by Sims and Zha (2006).

β1 =

1.0

1.0

 β2 =

1.0

1.0

 β3 =

1.0

1.0


I leave everything else, including the priors, unchanged and conduct the same analysis as

above. I present the results in Tables 6-8.

[Table 6 about here]

[Table 7 about here]

[Table 8 about here]

Under the linear regression DGP, the model performs remarkably well under all sample

sizes and all variance sizes. This may be partially driven by the fact that there is a 50% prior

probability placed on each of these coefficients being identical. It is important to note that

while I have fixed the prior mixture probabilities to be identical for all sets of parameters, in

general a researcher could relax this assumption, placing different prior mixture probabilities

on each pair of coefficients.14

14For example, if a researcher suspected that one pair of coefficients would be different in each regime, she
could increase the prior probability on mixture 2 and reduce the prior probability on mixture 3.
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6 Application: Interest Rate Rules

6.1 Baseline Sample: 1970-2007

Next, I apply the MS-SSVS model to the interest rate rule equation and data described

in section three. Recall that I estimate a rule of the form:

it = µst + ρstit−1 + φπst (π
e
t − πTt ) + φustu

e
t + φ∆ust

∆uet + σtεt

εt ∼ N(0, 1)

σt = exp

(
ht
2

)
ht = ht−1 + vt

vt ∼ N(0, Q)

st ∈ {0, 1}

P(st = j|st−1 = i) = qij

while also allowing for MS-SSVS coefficient restrictions on µst , ρst , φπst , φust , and φ∆ust
.

I have three major findings: (1) I find evidence of distinct regimes in monetary policy,

with the response to the unemployment gap changing substantially between regimes; (2) at

the posterior mean, the FOMC’s response to the inflation gap is similar across both regimes;

(3) the volatility of the error term varies substantially across time and the timing does not

appear to coincide with the estimated regimes.

Detailed findings for the regression parameters are presented in Tables 9, 10 and 11, as

well as in Figure 1. In the last column of Tables 9 and 10, we see that there is substantial

evidence that four of the five regression coefficients have entered the Taylor rule linearly,

remaining constant regardless of regime. The only coefficient that exhibits strong evidence

of regime switching is the unemployment gap response coefficient, which has over a 90%

posterior probability of being distinct across regimes. This is further evidenced in Table 11,
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which shows that the posterior mean for all coefficients are very similar across regimes, with

the exception of the unemployment gap response coefficient. Finally, this is visualized in

Figure 1, which plots the entire estimated density of coefficients in each regime. While most

densities lie largely on top of each other, the densities of the unemployment gap response

coefficient are largely separated, indicating that it is distinct across regimes.

[Table 9 about here]

[Table 10 about here]

[Table 11 about here]

[Figure 1 about here]

To get a better sense of the magnitude of the difference across regimes, Figure 2 plots the

FOMC’s expected response to a persistent one-percentage-point unemployment gap up to 40

meetings (roughly 4–5 years) in the future. Clearly, the responses differ across the regimes.

In the strong unemployment response regime, if this unemployment gap persisted for 40

meetings, the FOMC would have decreased the Federal Funds rate by a total of roughly

4.2 percentage points, vs. only a 0.9 percentage point reduction in the weak unemployment

response regime.

On the contrary, in Figure 3, we see that even in the long-run, the FOMC’s response to

expected inflation is roughly constant across regimes. After a one-percentage-point inflation

gap lasting 40 meetings, the FOMC would likely increase the Federal Funds rate by between

roughly 2.0 and 2.5 percentage-points under either regime. For all periods, the credible

intervals from each regime overlap substantially, indicating that there is very weak evidence

of any meaningful difference between the inflation response across regimes.

[Figure 2 about here]

[Figure 3 about here]
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Despite the fact that the posterior mean for the inflation response is roughly equal across

regimes, the inflation response coefficient has a bimodal density in the strong unemployment

response regime, as can be seen in Figure 1. In this regime, there is roughly a 13% probability

that the FOMC was responding only very weakly to the inflation gap. This finding would

be missed if parameter constancy had been “pre-tested” in an unrestricted model, with

the final estimated model only allowing for changes in the unemployment gap. The bi-

modal inflation response shows the importance of averaging over uncertainty with respect

to parameter switching, and underlines a strength of the MS-SSVS approach taken in this

paper.

I also find strong evidence of change in the volatility of the interest rate rule. This change

can be seen in Figure 4, with the standard deviation of the error in the interest rate rule

peaking in the early 1980’s at around 150 basis points and falling substantially since then,

to below 25 basis points. The spike in volatility in the interest rate rule in the late 1970’s

and early 1980’s is expected, as the Federal Reserve was on record as targeting the money

supply rather than the interest rate rule during this time period. Once they returned to

targeting the Federal Funds rate, the volatility steadily declined, as the interest rate rule

matched actual FOMC behavior much more accurately.

[Figure 4 about here]

Along with the estimated parameter values, the timing of regimes and regime changes

are of interest. These are presented in Figure 5, which plots the posterior mean of being

in the strong unemployment gap response at each meeting date. Also displayed in Figure

5 are the dates of changes in Fed chair, and for each Fed chair, the average probability

that the FOMC was in the strong unemployment gap response regime during their time as

chair. While there are certainly swings in estimated regime probabilities within each chair’s

tenure, especially under Burns and Greenspan, the transition period between chairs also

seems to correspond to regime change. For instance, the probability of being in the strong

unemployment response regime begins declining from over 80% very late in Burns’ tenure,
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continues sliding throughout Miller’s brief leadership, and bottoms out below 20% as Volcker

takes control in 1979. Interestingly, despite the fact that I am using a very different proxy

of the output gap than Orphanides (2004), my findings are largely consistent with his — the

FOMC under Burns was more likely to respond strongly to the output gap, with the FOMC

under Volcker much less likely to do so. Under Burns, the average probability of being in the

strong unemployment response regime was roughly 60%, while under Volcker it was roughly

20%. Because the inflation response coefficient is largely similar across regimes, this means

that the FOMC under Volcker put relatively more weight on its inflation response, which is

consistent with narrative historical evidence (e.g. Kaya et al. (2019)).

[Figure 5 about here]

While my results are consistent with some of the previous literature, such as Orphanides

(2004) and Sims and Zha (2006), they stand in contrast to some others. For example, in

a recent application of a Markov-Switching model to interest rate rules in Murray et al.

(2015) the authors find that the inflation response in one regime was much lower than in

the other regime, and there were periods in which it was highly probable that the FOMC

failed to satisfy the “Taylor Principle.” However, they find that this weak inflationary

response occurred during the Volcker years, 1979-1985 (among other times). This seems

highly counterfactual, as it goes against historical accounts, narrative evidence from the

FOMC meetings during this time period, and other statistical evidence found by Clarida

et al. (2000) among others, all of which attribute the fall in inflation after 1980 to the

strong inflation response during Volcker’s tenure. My findings are more consistent with

this latter strand of literature, Although I do not find evidence of a direct change in the

inflation response coefficient, I do find a reduction in the unemployment gap response during

the Volcker years. Therefore, like Orphanides (2004), I find that the FOMC under Volcker

responded relatively more to inflation than it had previously.
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6.2 Extended Sample: 1970-2015

As of writing, FOMC Greenbook forecasts – incorporated into the newly created “Teal-

book” in 2010 – are available through the last FOMC meeting of 2015. The additional period

2008-2015 spans the zero-lower-bound (ZLB) episode and coincides with other changes in

monetary policy, such as the introduction of the Fed’s official 2% inflation target, which was

first announced in early 2012. Most importantly for this study, the ZLB period violates

assumptions of the MS-SSVS model developed in section four. The model assumes that the

residuals are Normally distributed, independent, and identically distributed. These assump-

tions are violated when the dependent variable is censored, like the Federal Funds rate was

during the ZLB period.

Therefore, during the period for which the ZLB is binding, nearly all of the 2008-2015

period, I replace the observed Federal Funds rate with an estimate of the “shadow rate” from

Johannsen and Mertens (2021). This estimate of the shadow rate, over the ZLB period, can

be seen in Figure 6.

[Figure 6 about here]

This shadow rate, like those constructed in Aruoba et al. (2021a) and Aruoba et al. (2021b),

comes from the output of a structural model for the U.S. economy. This is conceptually dif-

ferent from the shadow rate in Wu and Xia (2016), which is instead constructed based on the

term structure of interest rates (i.e., the yield curve). As discussed in Aruoba et al. (2021a),

VAR or DSGE based estimates tend to be qualitatively similar to each other, but distinct

from the Wu and Xia (2016) estimate. As shown in Figure 7, the VAR based estimate from

Johannsen and Mertens (2021) tends to show monetary policy at its most accommodative

early in the Great Recession, and then roughly constant around -1% until mid-late 2015.

In contrast, the Wu and Xia (2016) estimate is only marginally accommodative (around

-0.5%) during 2009, and continues becoming more accommodative throughout the economic

recovery, bottoming out in the second quarter of 2014 around -3%, before sharply rising
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right before liftoff at the end of 2015. As noted by Aruoba et al. (2021a), this seems like

an unrealistic path of the stance of monetary policy given the narrative evidence from the

time, which suggests that monetary policy was at its most accommodative during and just

following the Great Recession.15

[Figure 7 about here]

While there are limitations to this approach, the results in this extended sample are

qualitatively similar to those described in section 6.1. One limitation of using a shadow rate

estimate to extend the sample in this study is that it changes the construction of the depen-

dent variable. For periods in which the Federal Funds rate is above the ZLB, the dependent

variable is constructed by averaging the daily FF rate between meeting dates. Once the ZLB

is binding, I use the estimated shadow rate, which is only available quarterly. Therefore,

when the FOMC meeting date falls within a given quarter, I use that quarter’s shadow rate

estimate. Nevertheless, the results over 1970-2015 sample are qualitatively similar to the

estimates produced using only the 1970-2007 data. I still find that the intercept, AR(1)

parameter and inflation gap response are roughly constant between regimes. In addition to

switching occurring in the unemployment gap response coefficient, switching also appears to

occur in the FOMC’s response to the change in the unemployment rate. This is qualitatively

similar to the findings in the limited sample, as switching occurs in unemployment response

but not inflation response. The estimated regimes throughout the 1970-2007 period are

similar to the baseline results.16 The new 2008-2015 period is characterized by a very high

probability of being in the regime with the more muted response to the unemployment rate.

This makes intuitive sense, since the unemployment rate was steadily falling during this

period, without a corresponding increase in interest rates. Meanwhile, inflation remained

15Consider one example of why these estimates may diverge. Movement in the Wu and Xia shadow rate,
driven by a decrease in the yields on longer-term bonds over the 2010-2014 period, could have been caused
by investors coming to believe a “secular stagnation” hypothesis, rather than from more accommodative
monetary policy. As unemployment was steadily recovering during this period and inflation fairly stable,
the values imputed in a VAR or DSGE model would be more stable.

16One exception is that mean probability of responding strongly to unemployment now appears to be
roughly equal across the Burns and Volcker periods.
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below target throughout most of this period, which would be consistent with the low or

negative target Federal Funds rate that actually occurred.

7 Conclusion

Over the past 15 years, there has been considerable disagreement about the existence

and nature of changes in the coefficients in the FOMC’s interest rate rule. In an attempt

to clarify the nature of these changes, I build a Markov-Switching model that can endoge-

nously determine the existence of two types of restrictions: (1) zero-restrictions, in which

a variable may be excluded from one or both of the regimes and (2) identity-restrictions,

in which the regression coefficient on the same variable may be restricted to be identical

across both regimes. The estimation procedure blends and extends the Gibbs samplers that

were previously derived for estimation of Markov-Switching models and Stochastic Search

Variable Selection models. I call this unified model an MS-SSVS model.

I find that the MS-SSVS model performs well at identifying true restrictions in a Monte-

Carlo exercise using simulated data. In general, the MS-SSVS model performs best in

data-sets that have a relatively small amount of noise. In these data sets, it is able to

detect zero-restrictions, “identical” restrictions, and switching in the coefficients with high

probability. The MS-SSVS model is still able to identify these restrictions as the amount of

noise grows, and it is able to detect linear cross-regime restrictions with a surprisingly high

degree of accuracy in even the noisiest data sets.

When I apply this model to an interest rate rule for the Federal Funds rate, I find three

things. First, I find strong evidence that there have been changes in the volatility of interest

rate rule over time. Second, consistent with Orphanides (2004), I find substantial evidence

that there have been changes in the FOMC’s unemployment response over time. I find

that the periods least likely to have had a strong response to unemployment are the 1980s,

the period from roughly 1995-2004, and in the extended sample, the period from 2008-2015.
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Finally, there is relatively little evidence that there have been economically meaningful shifts

in the FOMC’s inflation response. Despite the fact that the point estimate of the response

to the inflation gap is roughly equivalent across regimes, I do find a heightened probability

of a weak inflation gap response in the 1970’s. This last finding highlights the importance

of averaging over the uncertainty regarding parameter regimes, as is done in the MS-SSVS

model.
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Table 1: Evidence of Parameter Change in Previous Studies

Study Smoothing Output Inflation Variance

Clarida et al. (2000) – – Y –
Orphanides (2004) – Y – –
Boivin (2006) – Y Y –
Sims and Zha (2006) – – – Y
Murray et al. (2015) Y Y Y Y
Alba and Wang (2017) – Y Y Y
Gonzalez-Astudillo (2018) – Y Y Y
Bennani et al. (2018) Y Y – –

Note: Smoothing, output, inflation, and variance indicate whether coefficients in each respective variable

were found to change across regimes. “Y” means that there was evidence that it switched, “–” means that

the variable was excluded from consideration, was not allowed to switch, or was not found to switch.

Table 2: Monte-Carlo Priors

Parameter Prior Distribution Prior Mean Prior S.D.

c0 Constant 0.1 –
c1 Constant 15 –

τ k0 Constant c0

√
Var
(
β̂kOLS

)
–

τ k1 Constant c1

√
Var
(
β̂kOLS

)
–

p1 Constant 0.25 –
p2 Constant 1/12 –
p3 Constant 0.50 –
p4 Constant 1/12 –
p5 Constant 1/12 –
γkj Categorical

[
p1 p2 p3 p4 p5

] [
0.432 0.275 0.5 0.275 0.275

]
q00 Beta 0.8 0.16
q11 Beta 0.8 0.16
σ2 Inverse Gamma improper infinite
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Table 3: DGP1 – Low Variance (σ = 0.1)

T = 50 T = 100 T = 150 T = 200 T = 250

β1,0 6= 0
Prior 66.7% 66.7% 66.7% 66.7% 66.7%
Posterior 100% 100% 100% 100% 100%

β1,1 6= 0
Prior 66.7% 66.7% 66.7% 66.7% 66.7%
Posterior 100% 100% 100% 100% 100%

β2,0 = β2,1
Prior 50.0% 50.0% 50.0% 50.0% 50.0%
Posterior 99.4% 99.7% 99.8% 99.9% 99.9%

β3,0 = 0
Prior 33.3% 33.3% 33.3% 33.3% 33.3%
Posterior 94.4% 95.4% 95.8% 95.8% 95.9%

β3,1 = 0
Prior 33.3% 33.3% 33.3% 33.3% 33.3%
Posterior 94.4% 95.4% 95.8% 95.8% 95.9%

Note: β1,i 6= 0 refers to the total probability that the intercept is (correctly) not restricted to be zero in

regime i. For β1,0 this is given by p1,2 + p1,3 + p1,4. For β1,0 this is given by p1,2 + p1,3 + p1,5. β2,0 = β2,1

refers to the probability that the coefficient on X2,t is (correctly) restricted to be very close to equal across

regimes. This is given by p2,3. β3,i = 0 refers to the total probability that the coefficient on X3,t is (correctly)

restricted to be very close to zero. For β3,0 = 0 this is given by p3,1 + p3,5, while for β3,1 = 0 this is given by

p3,1 + p3,4.

Table 4: DGP1 – Medium Variance (σ = 0.5)

T = 50 T = 100 T = 150 T = 200 T = 250

β1,0 6= 0
Prior 66.7% 66.7% 66.7% 66.7% 66.7%
Posterior 75.3% 98.8% 100% 100% 100%

β1,1 6= 0
Prior 66.7% 66.7% 66.7% 66.7% 66.7%
Posterior 57.7% 95.2% 99.4% 100% 100%

β2,0 = β2,1
Prior 50.0% 50.0% 50.0% 50.0% 50.0%
Posterior 93.3% 97.8% 98.5% 98.9% 99.0%

β3,0 = 0
Prior 33.3% 33.3% 33.3% 33.3% 33.3%
Posterior 79.5% 82.5% 83.9% 83.1% 82.7%

β3,1 = 0
Prior 33.3% 33.3% 33.3% 33.3% 33.3%
Posterior 78.8% 81.8% 84.0% 83.3% 83.7%

Note: See the footnote under Table 3.
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Table 5: DGP1 – High Variance (σ = 1.0)

T = 50 T = 100 T = 150 T = 200 T = 250

β1,0 6= 0
Prior 66.7% 66.7% 66.7% 66.7% 66.7%
Posterior 31.5% 55.6% 71.0% 81.2% 90.3%

β1,1 6= 0
Prior 66.7% 66.7% 66.7% 66.7% 66.7%
Posterior 13.0% 25.7% 42.1% 52.6% 64.8%

β2,0 = β2,1
Prior 50.0% 50.0% 50.0% 50.0% 50.0%
Posterior 80.1% 88.1% 93.0% 94.2% 96.4%

β3,0 = 0
Prior 33.3% 33.3% 33.3% 33.3% 33.3%
Posterior 74.3% 76.6% 78.2% 76.3% 76.6%

β3,1 = 0
Prior 33.3% 33.3% 33.3% 33.3% 33.3%
Posterior 74.4% 75.9% 78.6% 76.3% 77.4%

Note: See the footnote under Table 3.

Table 6: DGP2 – Low Variance (σ = 0.1), Linear Regression

T = 50 T = 100 T = 150 T = 200 T = 250

β1,0 = β1,1
Prior 50.0% 50.0% 50.0% 50.0% 50.0%
Posterior 100% 100% 100% 100% 100%

β2,0 = β2,1
Prior 50.0% 50.0% 50.0% 50.0% 50.0%
Posterior 100% 100% 100% 100% 100%

β3,0 = β3,1
Prior 50.0% 50.0% 50.0% 50.0% 50.0%
Posterior 100% 100% 100% 100% 100%

Note: β1,0 = β1,1 refers to the total probability that the intercept is (correctly) restricted to be very close

to equal across regimes. This is given by p1,3. β2,0 = β2,1 refers to the total probability that the coefficient

on X2,t is (correctly) restricted to be very close to equal across regimes. This is given by p2,3. β3,0 = β3,1

refers to the total probability that the coefficient on X3,t is (correctly) restricted to be very close to equal

across regimes. This is given by p3,3.
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Table 7: DGP2 – Medium Variance (σ = 0.5), Linear Regression

T = 50 T = 100 T = 150 T = 200 T = 250

β1,0 = β1,1
Prior 50.0% 50.0% 50.0% 50.0% 50.0%
Posterior 92.8% 96.5% 97.9% 99.4% 99.3%

β2,0 = β2,1
Prior 50.0% 50.0% 50.0% 50.0% 50.0%
Posterior 92.4% 96.0% 98.1% 99.0% 99.7%

β3,0 = β3,1
Prior 50.0% 50.0% 50.0% 50.0% 50.0%
Posterior 92.8% 96.6% 97.6% 99.2% 99.6%

Note: See the footnote under Table 6.

Table 8: DGP2 – High Variance (σ = 1.0), Linear Regression

T = 50 T = 100 T = 150 T = 200 T = 250

β1,0 = β1,1
Prior 50.0% 50.0% 50.0% 50.0% 50.0%
Posterior 81.8% 85.7% 87.5% 90.6% 91.8%

β2,0 = β2,1
Prior 50.0% 50.0% 50.0% 50.0% 50.0%
Posterior 84.1% 86.1% 89.3% 92.4% 93.4%

β3,0 = β3,1
Prior 50.0% 50.0% 50.0% 50.0% 50.0%
Posterior 84.2% 88.3% 90.3% 92.3% 93.3%

Note: See the footnote under Table 6.
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Table 9: Estimated Restrictions in the “Strong” Unemployment Response Regime

Zero-Restriction Freely Estimated Identical Restriction

µ1 0.0% 0.0% 100%
ρ1 0.0% 0.0% 100%
φπ1 13.1% 4.5% 82.3%
φu1 0.0% 89.9% 9.4%
φ∆u1 0.3% 7.4% 89.9%

Note: Here, “Zero-restriction” is the percentage of posterior draws in which a prior mixture distribution

centered on zero and with a small variance was selected, and the parameter was restricted to be very close to

zero. “Freely Estimated” is the percentage of posterior draws in which a prior mixture distribution centered

on zero with a very wide variance was selected, so the parameter estimate would likely differ from zero and

from its value in the other regime. “Identical Restriction” is the percentage of posterior draws in which the

prior mixture distribution that restricts the parameters to be equal across regimes, but different from zero,

was selected.

Table 10: Estimated Restrictions in the “Weak” Unemployment Response Regime

Zero-Restriction Freely Estimated Identical Restriction

µ0 0.0% 0.0% 100%
ρ0 0.0% 0.0% 100%
φπ,0 4.0% 13.7% 82.3%
φUN,0 67.2% 23.5% 9.4%
φ∆UN,0 4.5% 5.5% 89.9%

Note: See the footnote under Table 9.

Table 11: Mean Coefficient Values in Each Regime

“Weak” UN Regime “Strong” UN Regime

µ 6.622 6.622
ρ 0.949 0.949
φπ 0.245 0.218
φUN -0.070 -0.331
φ∆UN -0.185 -0.195

Note: The columns here represent the posterior mean for each regression coefficient, conditional on being

in either the “weak” unemployment response regime or the “strong” unemployment response regime. In this

table, φπ, φUN , and φ∆UN represent one-period responses. The long-run responses are a function of these

coefficients and ρ.
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Figure 1: Regression Parameters
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Note: Each panel of this plot contains two normalized histograms. In each, the y-axis is scaled so the area

covered by the bars in the histogram sums to one. The the orange bars correspond to the posterior densities

in the “strong” unemployment response regime, while the blue bars correspond to the posterior densities

in the “weak” unemployment response regime. For most parameters the normalized histograms are closely

aligned, suggesting no major differences in coefficient values between the two regimes. The major exception

is the posterior densities for the FOMC’s response to the unemployment gap – hence the two regimes can

be categorized as “strong” or “weak” unemployment response regimes.
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Figure 2: Response to 100 Basis Point Unemployment Gap
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Figure 3: Response to 100 Basis Point Inflation Gap
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Figure 4: Stochastic Volatility
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Figure 5: Probability of Strong Unemployment Response Regime
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Note: The solid blue line represents the probability of the “strong unemployment response.” The vertical

dashed lines denote changes in Fed chair, and the orange horizontal lines represent the average probability

of being in the “strong unemployment response” regime under the different chairs.
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Figure 6: Johannsen and Mertens (2021) Shadow Rate
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Figure 7: Johannsen and Mertens (2021) and Wu and Xia (2016) Shadow Rates
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Figure 8: Regression Parameters (Extended Sample, 1970-2015)
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Note: Each panel of this plot contains two normalized histograms. In each, the y-axis is scaled so the area

covered by the bars in the histogram sums to one. The the orange bars correspond to the posterior densities

in the “strong” unemployment response regime, while the blue bars correspond to the posterior densities in

the “weak” unemployment response regime.
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Figure 9: Probability of Strong Unemployment Response Regime (Extended Sample, 1970-
2015)
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Note: The solid blue line represents the probability of the “strong unemployment response.” The vertical

dashed lines denote changes in Fed chair, and the orange horizontal lines represent the average probability

of being in the “strong unemployment response” regime under the different chairs.
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Technical Appendix — More information about SSVS

and the Estimation Procedure

Enforcing parameter restrictions in SSVS

In an SSVS model, the posterior probability of each restriction is proportional to the prior
probability of the restriction times the prior density for βk under that restriction evaluated at
the posterior draw of βk. Therefore, the “restrictions” are only enforced approximately. To
see why this is necessary, consider a prior density for the zero-restriction in which τ0 = 0, so
that the coefficient was literally restricted to equal zero. Unless this restriction was chosen,
our estimate of βk will almost surely never be exactly zero. Therefore, the posterior density
under this restriction will always be zero, since βk 6= 0; therefore this restriction will never
be enforced. Our goal when choosing τ0 is to choose a sensible value that will enforce this
zero-restriction when appropriate, while keeping the estimate of βk near zero in the event
that this restriction is chosen. Our goal when choosing ε is similar. We want to choose a
number small enough that the prior density under this restriction will be high when both
values of βk are approximately equal, but we need to be careful to not choose a value for ε
that is so small that the restriction will never be enforced.

Using Data to Inform SSVS Priors

The prior for the regression coefficients is data dependent since ̂V ar(bk) depends on
the dependent variable. Therefore, it does not adhere to the requirement, in a Bayesian
approach, that the prior be independent of the observed dependent data. However, as
discussed in George and McCulloch (1993), the zero-restriction region depends on the values

for both τ0 and τ1. George and McCulloch (1993) find that using ̂V ar(bk) in the choices of τ0

and τ1 helps to ensure that this zero-restriction region lies over a sensible space so that the
coefficients are restricted to be close to zero only where appropriate. This prior, although
not technically valid due to its dependence on the observed data, remains popular in the
literature, as evidenced by its use in Koop and Korobilis (2010).17

Estimation Procedure

I set independent priors across the hierarchical parameters:

p(q00, q11, σ
2, τ0, τ1, p1, p2,p3, p4, p5, ε) =

p(q00)p(q11)p(σ2)p(τ0)p(τ1)p(p1)p(p2)p(p3)p(p4)p(p5)p(ε)

I assume that the prior parameters τ0, τ1, ε, p1, p2, p3, p4, p5 are each set by the researcher,
i.e. their prior is a point-mass at a particular value. This is a common assumption in

17Priors of this form are sometimes called “empirical Bayes” methods. One argument for their use,
although not mathematically rigorous, is that the goal of empirics is to discover features of the data. Priors
of this form should be considered if they can be shown to be well behaved and able to uncover features of
the data, even if they do not technically adhere to proper Bayesian theory.
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the SSVS literature. The parameters τ0, τ1, and ε control the variance of the each prior
mixture distribution. The probabilities, p1, p2, p3, p4, and p5, control the weights for each
prior distribution, and are assumed to be constant across all coefficients, so the k subscript
has been dropped for ease of notation.

For the other three hyper-parameters, q00, q11, and σ2, I set prior distributions:

p(q00) = Beta(a0, b0)

p(q11) = Beta(a1, b1)

p(σ2) = InverseGamma(αQ, βQ)

Drawing from the full posterior directly is intractable. Instead, I draw from each of the
conditional posteriors. This is called the Gibbs sampler. Let β = [β0, β1]′, Ps = [q00 q11]′,
τ = [τ0, τ1]′, Pγ = [p1, p2, p3, p4, p5]′, Γ = γK . The process is as follows:

1. Sample the indicators for the mixture of normals prior each variable:

p(Γ(z)|Y, β(z−1), P (z−1)
s , σ2,(z−1), S

(z−1)
T , τ, Pγ) = p(Γ(z)|Y, β(z−1), S

(z−1)
T , τ, Pγ)

p(Γ(z)|Y, β(z−1), S
(z−1)
T , τ, Pγ) = Categorical

Γ
(z)
k = Categorical



p1f(N(0,Σ1)|βk)∑5
i=1 pif(N(0,Σi)|βk)
p2f(N(0,Σ2)|βk)∑5
i=1 pif(N(0,Σi)|βk)
p3f(N(0,Σ3)|βk)∑5
i=1 pif(N(0,Σi)|βk)
p4f(N(0,Σ4)|βk)∑5
i=1 pif(N(0,Σi)|βk)
p5f(N(0,Σ5)|βk)∑5
i=1 pif(N(0,Σi)|βk)


This procedure is based on George and McCulloch (1993). In the current paper, their
procedure is slightly modified because I have a mixture of five normal distributions
rather than two. Once the prior mixture distributions are selected, form the prior
variance for β as:

D =


Σk=1 0 · · · 0 0

0 Σk=2 0 · · · 0

0 0
. . . · · · 0

0 0 0 · · · Σk=K


D is block diagonal, with the Cholesky decomposition of the two-by-two mixture vari-
ance for each pair of coefficients, k, Σk along the diagonals, with zeros everywhere
else.
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2. Sample the regression coefficients:

p(β(z)|Y,Γ(z), P (z−1)
s , σ2,(z−1), S

(z−1)
T , τ, Pγ) = p(β(z)|Y,Γ(z), σ2,(z−1), S

(z−1)
T , τ)

p(β(z)|Y,Γ(z), σ2,(z−1), S
(z−1)
T , τ) ∼ N

(
β̂, V

)
V = ((DRD′)−1 +X ′X)−1

β̂ = V X ′Y

where R is a prior correlation matrix. In this application, R is set to the identity
matrix.

3. Sample the variance of the regression error:

p(σ2,(z)|Y,Γ(z), β(z), P (z−1)
s , S

(z−1)
T , τ, Pγ) = p(σ2,(z)|Y, β(z), S

(z−1)
T )

p(σ2,(z)|Y, β(z), S
(z−1)
T ) = Inverse Gamma

σ2,(z) ∼ IG

(
aQ +

T

2
, βQ +

SSE

2

)
where T is the sample size and SSE = (Y −Xβ)′(Y −Xβ). This step is replaced by
sampling stochastic volatility via Kim et al. (1998) in the interest rate rule application.

4. Sample the Markov Regime indicators:

p(S
(z)
T |Y,Γ

(z), β(z), σ2,(z), P (z−1)
s , τ, Pγ) = p(S

(z)
T |Y, β

(z), σ2,(z), P (z−1)
s )

using the procedure described in Kim and Nelson (1999).

5. Sample the Markov transition probabilities:

p(P (z)
s |Y,Γ(z), β(z), σ2,(z), S

(z)
T , τ, Pγ) = p(P (z)

s |Y, S
(z)
T )

p(P (z)
s |Y, S

(z)
T ) = Beta

P ii,(z)
s = Beta(ai +Nii, bi +Nij)

where Nij is the number of times that the regime transitioned from regime i to regime

j in S
(z)
T .
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Overview of the prior distribution for the regression pa-

rameters

Helicopter Tour of Prior for βk

Recall that the prior for βk = [βk0 β
k
1 ]′ is given by a mixture of five Normal distributions:

βk ∼ γk1N
([

0
0

]
, τ0

[
1 0
0 1

])
+ γk2N

([
0
0

]
, τ1

[
1 0
0 1

])
+ γk3N

([
β̂kOLS

β̂kOLS

]
, τ1

[
1 1− ε

1− ε 1

])
+ γk4N

([
0
0

]
,

[
τ1 0
0 τ0

])
+ γk5N

([
0
0

]
,

[
τ0 0
0 τ1

])

In my application, I choose:

Pr(γk1 = 1) = 0.5

Pr(γk2 = 1) =
.25

3
Pr(γk3 = 1) = 0.25

Pr(γk4 = 1) =
.25

3

Pr(γk5 = 1) =
.25

3

In addition, I choose:

τ k0 = c0

√
̂var(βk)

τ k1 = c1

√
̂var(βk)

c0 = 0.1

c1 = 15.0

where ̂var(βk) is the OLS estimate of the variance of βk under a no regime switching as-
sumption. These priors are similar to ones suggested in George and McCulloch (1993) and
Koop and Korobilis (2010). Finally, for the case of parameters restricted to be equal across
regimes, I set ε = 1.0− 0.99999.

In figures (1)-(3), I plot the prior probability density function of β0 and β1, implicitly
assuming that β̂kOLS = 0. This prior density function has some striking features. It is
strongly peaked near β0 = 0 and β1 = 0, so there is a relatively high prior probability that
both coefficients are restricted to zero. If the estimated coefficients land in the orange region
of figure 2 (or the yellow region of figure 3), it is almost a certainty that the priors for β0

and β1 will be centered on zero with a very tight prior variance. Additionally, there are
three other regions which receive relatively large prior mass: both regions where one of the
coefficients is restricted to be near zero, and the diagonal region representing coefficients
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that are (roughly) identical under each regime. Outside of these four relatively narrow but
sharply peaked regions, the Normal distribution with the highest probability density function
corresponds to both regimes being freely estimated.

Figure 10: Prior Probability Density Function for Different Values of β0 and β1

Figure 11: Prior Probability Density Function for Different Values of β0 and β1: View from
Above
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Figure 12: Contour Plot of the Prior Probability Density Function for Different Values of β0

and β1
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Convergence Diagnostics

Below, I present evidence that the estimator converges to a unique stationary distribution.
I first present running mean plots throughout the samples that are discarded. If the sampler
is converging to a stationary distribution, then the means of all of the parameters of the
model should converge to their means in the stationary distribution. If it is not, then these
means will be trending up, down, or bouncing around. Next, I present the autocorrelation
functions for the parameters of the model. These functions show the correlation between
the draw of the parameter at one iteration and the draw of the same parameter t iterations
later. If the sampler is well-behaved, then the autocorrelation functions should fall towards
zero as the number of iterations increases. A simple rule-of-thumb is that the number of
discarded “burn-in” draws should be at least ten times larger than the maximum number of
iterations that it takes the autocorrelation of any parameter to drop to zero.
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Running Mean Plots

Figure 13: Regression Parameters
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Figure 14: Regime Probabilities
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Autocorrelation Functions

Figure 15: Regression Parameters
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Figure 16: Regime Probabilities
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Both of these metrics suggest that the sampler is well-behaved, although the ACF func-
tion is declining fairly slowly. The running mean plots become flat towards the end of the
discarded draws, suggesting that the sampler has converged to a stationary distribution.
The autocorrelation plots for a couple of the regression parameters is still fairly high at
100 draws, suggesting that more than 1,000 burn-in draws are needed. I perform 1,000,000
burn-in draws in an abundance of caution. I keep the next 1,000,000 draws and use them to
form posterior inference.
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Appendix C – Robustness Exercises

In this appendix, I explore alternative formulations of the unemployment gap and the
inflation gap. In the main body, for the unemployment gap, I assume a constant natural
unemployment rate. For the inflation gap, I used an estimate of the FOMC’s inflation target
from Chan et al. (2013). However, it is worthwhile to explore alternatives to see if these
assumptions are having a strong influence on the results.

Alternative Unemployment Gaps

For the unemployment gap, I consider two possible alternatives. First, I consider a
real-time estimate of the natural rate that comes from various sources, but represents the in-
formation available to, and beliefs of, the FOMC. This is stitched together from the narrative
evidence in Orphanides and Williams (2005) for the period before 1989, from the NAIRU
estimates presented in the FOMC Bluebook between 1989-1997, and then from the FOMC
Greenbook after 1997. This estimate of the natural rate is presented in Figure 17, below.

Figure 17: Real-Time CBO/FOMC Estimate of the Natural Rate
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Next, I consider the estimate from a univariate state space model that allows for time-
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variation in the natural rate. The model is as follows:

ut = ct + ũt

ct = ρct−1 + ωt

ũt = ũt−1 + vt

0 ≤ |ρ| ≤ 1

ωt ∼ N (0, σω)

vt ∼ N (0, σv)

where ut is the unemployment rate, ct is the cyclical component of the unemployment rate, ũt
is the natural or long-run unemployment rate, ρ is the persistence of the cyclical component,
ωt is the error term in the cyclical component, vt is the error term of the natural rate, σω is
the standard deviation of the error term of the cyclical component, and σv is the standard
deviation of the error term of the natural rate.

To estimate this model, I place loose priors on ρ, σω, and σv, and use Gibbs sampling
to perform Bayesian estimation. One drawback of this approach is that since estimation
uses all of the data, this model does not produce estimates of the unemployment gap that
could have been produced in real-time by the FOMC. However, to alleviate this problem
somewhat, after estimating the model parameters I set them to their posterior medians, and
use one-sided Kalman filtering to produce estimates of the natural rate of unemployment. If
the FOMC had access to the model parameters, this portion could have been done in real-
time, since it is using filtered, rather than smoothed, estimates of the natural rate. After
estimating this model, I find qualitatively similar results to the CBO/FOMC natural rate,
especially after 1980.

Figure 18: Filtered State-Space Estimate of the Natural Rate
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In total, I have three separate estimates of the unemployment gap. The first, used in the
main body of the paper, assumes a constant natural rate. The second uses a reconstructed
real-time estimate of the natural rate from the FOMC and CBO. The third uses a state-
space model estimated over the full sample. While the first two are fully consistent with
a real-time forecasting rule, the third is not since it uses the full sample for estimation.
However, the state-space model was applied in such a manner that conditional on the model
parameters, only “real-time” data is incorporated in the filtered estimates of the natural
rate. In any case, the resulting unemployment gap from all three methods are similar and
strongly correlated, as can bee seen in Figure 19 and Table 12.

Figure 19: All Three Estimates of the Unemployment Gap
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Table 12: Correlation Matrix for Various Unemployment Gaps

Constant CBO/FOMC State Space

Constant 1.00 0.82 0.99
CBO/FOMC 0.82 1.00 0.83
State Space 0.99 0.83 1.00

Alternative Inflation Gap

In the baseline results, I use an estimate of trend inflation from Chan et al. (2013) as
my estimate of the FOMC’s target inflation rate. However, there are other ways to estimate
trend inflation. For instance, one could use an AR(1) model, an unobserved components
model, or a state space model with persistence like the one I used for the natural rate of
unemployment. In fact, the latter forms the basis of the trend inflation estimates in Chan
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et al. (2013), who also allow for bounds on trend inflation. I believe this is a reasonable
course of action, as I share their view that there is,

“no compelling reason for thinking that, even in high-inflation times, it is likely
that central bankers desired high-trend inflation. Experiences such as the high-
inflation period of the 1970s are better thought of as times in which deviations
from the desired trend level of inflation were quite persistent.” – Chan et al.
(2013)

This is especially relevant in the present study, as I don’t simply need a measure of trend
inflation. Instead, I need an estimate of the FOMC’s inflation target (i.e., their desired
inflation rate).

Nevertheless, use of the bounded model of trend inflation of Chan et al. (2013) is a choice,
and it is important to investigate how consequential that choice is. In much of the DSGE
literature, authors use a random walk (or unobserved components model) to model trend
inflation (e.g., Smets and Wouters (2003) and Cogley and Sargent (2005)). One exception is
Del Negro et al. (2015), who model trend inflation as an AR(1) process. After estimating this
parameter, they find a posterior mode for the AR(1) coefficient of 0.99. Using this estimate
on GDP Deflator inflation, I construct an alternative measure of trend inflation. The two
estimates of trend inflation are presented in Figure 20. We can see that the estimates from
Del Negro et al. (2015) and Chan et al. (2013) are much different. The Del Negro et al. (2015)
estimate is highly volatile and rises to a peak of 12% while the Chan et al. (2013) estimate is
much more stable, never exceeding 3.7%. While Del Negro et al.’s (2015) method is certainly
a valid measure of trend inflation, it seems inconsistent with the narrative evidence from the
1970’s to use it as a measure of target inflation, since the FOMC likely did not desire inflation
to be as high as 12%, their preferences for inflation were probably much less volatile, and
during the early Volcker years they likely did not desire for inflation to remain above 8%.

Figure 20: Two Estimates of Trend Inflation

1970 1975 1980 1985 1990 1995 2000 2005 2010
0

2

4

6

8

10

12

Pe
rc

en
t

Chan et al. (2013)
Del Negro et al. (2015)

57



Results

Next, I fit the MS-SSVS model using these alternative measures of the unemployment
gap or inflation gap. As seen above in Figure 19 and Table 12, the unemployment gap
constructed using the state space model is nearly identical to the unemployment gap that
assumes a natural rate. Therefore, the results when using the unemployment gap constructed
using the state space model are very similar to the baseline results. The results when using
the CBO/FOMC real-time unemployment gap differ more from the baseline, but remain
qualitatively similar. In both cases, there is substantial evidence of switching in the unem-
ployment response coefficient(s), but little evidence of switching in the inflation response
coefficient. Similarly, the estimated probability of being in the “strong” or “weak” unem-
ployment response regime are qualitatively similar. Finally, the volatility of the rule changes
in a similar way over time, regardless of which unemployment gap estimate is used.

On the other hand, when the alternative inflation gap is used, the differences compared
to the baseline are more pronounced. This includes the posterior density of the inflation
response in one regime having substantial mass in the negative region, suggesting that in
this regime higher inflation would lead to a lower Federal Funds rate. As discussed above,
the AR(1) estimate of the inflation target does not comport with the narrative evidence,
especially during the 1970’s, so I take these estimates with a grain of salt.

In Tables 13 and 14, I present summaries of the posterior mean parameter estimates,
conditional on regime, for each of these alternatives.

Table 13: Posterior Mean Response Coefficients in the “Weak” Unemployment Response
Regime

Baseline CBO/FOMC State Space Del Negro et al. (2015)

µ 6.622 6.606 6.622 6.606
ρ 0.949 0.938 0.956 0.988
φπ 0.245 0.252 0.217 0.147
φUN -0.070 -0.082 -0.091 -0.013
φ∆UN -0.185 -0.081 -0.183 -0.108

Note: “Baseline” are the results in the body of the paper. “CBO/FOMC” are the results when the

unemployment gap is replaced with the CBO/FOMC real-time unemployment gap. “State Space” are the

results when the unemployment gap is replaced with the filtered state-space estimate. “Del Negro et al.

(2015)” are the results when the inflation gap is replaced with the AR(1) estimate from Del Negro et al.

(2015). In this table, φπ, φUN , and φ∆UN represent one-period responses. The long-run responses are a

function of these coefficients and ρ.
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Table 14: Posterior Mean Response Coefficients in the “Strong” Unemployment Response
Regime

Baseline CBO/FOMC State Space Del Negro et al. (2015)

µ 6.622 6.606 6.622 6.606
ρ 0.949 0.938 0.956 0.987
φπ 0.218 0.178 0.123 -0.064
φUN -0.331 -0.254 -0.217 -0.158
φ∆UN -0.195 -0.271 -0.195 -0.310

Note: See the footnote under Table 13.

We can also examine the posterior densities more carefully. For instance, for all alter-
natives, we always see at least some evidence of switching across in the unemployment gap
response:

Figure 21: Unemployment Gap Response Coefficient Density
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Note: The blue histogram is the posterior density in the “weak” UN response regime, and the orange

histogram is the posterior density in the “strong” UN response regime.
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For the inflation response coefficient, things are a bit different. Relative to the baseline,
both models using an alternative measure of the unemployment gap show a higher proba-
bility of a muted inflation response in the “strong” unemployment response regime. When
using the Del Negro et al. (2015) estimate of trend inflation, the inflation response in the
“strong” unemployment response is more than just muted — it actually reverses sign. It
now suggests that the FOMC had a negative inflation response (i.e., higher inflation implies
a lower nominal Federal Funds rate target). This seems counterfactual, and is may be an ar-
tifact of this estimate of trend inflation being inconsistent with the FOMC’s true underlying
target.

Figure 22: Inflation Gap Response Coefficient Density
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Note: The blue histogram is the posterior density in the “weak” UN response regime, and the orange

histogram is the posterior density in the “strong” UN response regime.

Finally, we can compare estimated regime probabilities over time. These are displayed
below, in Figure 23.
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Figure 23: Estimated Probability of “Strong” Unemployment Response Regime
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Looking at the top three graphs, we can see that when the Chan et al. (2013) estimate of
trend inflation is used, the regimes are qualitatively similar, with a relatively high probability
of being in the “strong” unemployment response regime in the early 1970’s, late 1980’s to
mid 1990’s, around 2000, and from roughly 2005-2006. When the Del Negro et al. (2015)
estimate of trend inflation is used, the probability of being in that regime rarely rises above
50%, with the exception of the 2005-2006 period, during which all four versions find a 100%
probability of being in the “strong” unemployment response regime.

Conclusion

The major results of the baseline model are robust to alternative constructions of the
unemployment gap: (1) there are two distinct regimes in unemployment response, (2) there
is less evidence of change in the intercept, AR(1), or inflation response parameters, and (3)
there is strong evidence of changes in volatility.

The same can not be said for the alternative measure of trend inflation considered,
namely, the model from Del Negro et al. (2015). However, this estimate of trend inflation
seems inconsistent with the narrative evidence of the FOMC’s views during the 1970’s and
1980’s. For example, it estimates that trend inflation reached 12% in the 1970’s and remained
persistently above 8% throughout the early-to-mid 1980’s. While this may be a perfectly
valid description of the way inflation was behaving at the time, it seems inconsistent with
the desires of the FOMC. Ultimately, I agree with the views expressed in Chan et al. (2013)
that the high inflation of the 1970’s was the result of a more persistent deviation from the
FOMC’s inflation target. Therefore, I believe that the Chan et al. (2013) estimate is more
suited for use in this context.
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