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Abstract. In this paper, we consider univariate forecasts made when using stationary, near unit root, 
and unit root data. Like Diebold and Kilian (2000), we conduct a Monte Carlo experiment 
investigating the usefulness of unit root tests prior to forming univariate forecasts. In our 
experiment, we consider more than one unit root test and also vary the order of integration in the 
time series. We find that unit root tests are indeed useful for forecasting, especially when the series 
has a large number of in-sample observations. However, the choice of unit test matters. Using root 
mean square error as a criterion for forecast performance, we find that the Philips-Perron test has an 
edge over the augmented Dickey-Fuller test and the Kwiatkowski–Phillips–Schmidt–Shin test. We 
recommend practitioners to be mindful of the choice of test, as the KPSS test is the default used in 
the forecast package in R, following Hyndman and Khandakar (2008), but the Philips-Perron test is 
available as an option in that package. 
 
Key Words: Augmented Dickey-Fuller; KPSS; Philips-Perron; Forecasting Algorithm; Monte Carlo; 
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1. Introduction 

 Unit root tests have been used for decades to determine if a given time-series is stationary (see 

Wolters and Hassler (2006) for an overview of the history). There are several reasons why 

econometricians want to identify whether a time series is stationary. Stationarity implies mean 

reversion, and as such the presence of stationarity can support certain theories. For example, 

distinguishing between stationary and unit root behavior in the real exchange rate can provide 

evidence for or against purchasing power parity. Distinguishing between stationary and non-

stationary data is also important outside of theoretical models. For example, the use of non-

stationary data in linear regression may result in spurious regressions (Ventosa-Santaulària (2009)), 

while spurious regression can be avoided if the regressors are stationary. 

 Distinguishing between stationary and non-stationary data is also important for forecasters. 

Forecasts made assuming stationary data will often be vastly different than those made under the 

assumption that the data is non-stationary, especially at long forecast horizons. Therefore, 

researchers like Diebold and Kilian (2000) have suggested that unit root tests are useful in 

forecasting. Their Monte Carlo experiment pitches a pre-test method, in which a series is tested for a 

unit root, and if found, differenced, against an 𝐴𝑅(1)	model and a random walk with drift model. 

They find that the augmented Dickey-Fuller test is useful in informing forecasters when to first-

difference the data, especially when the evidence is strongly against the presence of a unit root (i.e. 

the series does not have near unit root behavior).  

 In later work, Hyndman and Khandakar (2008, hereafter HK) develop an algorithm that 

automates a procedure that extends the method advocated by Diebold and Kilian (2000). It first uses 

a unit root test— Kwiatkowski–Phillips–Schmidt–Shin (KPSS) by default, or augmented Dickey-

Fuller (ADF) and Philips-Perron (PP) as options—before applying the corresponding ARIMA 

model. This paper extends the idea of Diebold and Kilian (2000) to compare which unit root test 

results in better forecasting performance.1 To be specific, we create a Monte Carlo exercise assuming 

certain linear data generating processes (DGP) ranging from 𝐼(0) to 𝐼(2), and use these simulated 

series to compare the HK approach against a model averaging approach (AVG) that assumes an 

I(0), I(1), or I(2) process with equal probability.2 If a unit root test helps determine the order of 

 
1 Diebold and Kilian (2000) is more specific; they have the real GDP series in mind in their simulation. They also 
explicitly assume a linear time trend. 
2 Therefore, unit root tests are absent in AVG. 



integration in HK, an AVG with equal weights on 𝐼(0), 𝐼(1) and 𝐼(2) can be seen as one without 

utilizing such posterior information. Our choice to use HK is partially a matter of convenience, 

because Hyndman and Khandakar have developed and have been updating the popular and widely 

used forecast package in R, which includes the HK algorithm. Therefore, our results also provide 

guidance on how to use the package effectively.3  

 We find that unit root tests are useful, but not equally so. Not surprisingly, unit root tests are 

particularly useful when the sample size is large, since the tests each have well-documented issues 

that arise in small samples. We find that, in general, the Philips-Perron test is more helpful in 

improving forecast performance than the default KPSS used in the R package. Practitioners should 

be mindful of the choice of unit root test when dealing with real world data.  

 Section 2 briefly explains the models. Section 3 discusses our Monte Carlo design, the data 

generating processes and our out-of-sample forecasting exercises. Section 4 reports and discusses 

the Monte Carlo results. We summarize this study and spell out both caveats and possible future 

research in Section 5. 

 

2. The Models 

The HK approach is standard, and details can be found in Hyndman and Athanasopoulos (2018). In 

order to approximate the experience of most practitioners, we keep the default HK settings from 

the R package, with a few exceptions.4 In a nutshell, the HK algorithm first uses a unit root test – 

the KPSS test is the default – to determine the order of integration and how many times a series 

needs to be differenced to rendered stationary before applying ARIMA. The maximum order of 

integration is set at 2 by default. Then, based on the results of the unit root test, the HK algorithm 

fits one of the three following types of ARIMA models: 𝐴𝑅𝐼𝑀𝐴(𝑝, 0, 𝑞), 𝐴𝑅𝐼𝑀𝐴(𝑝, 1, 𝑞) , or 

𝐴𝑅𝐼𝑀𝐴(𝑝, 2, 𝑞). Conditioning on the result from the unit root test using the default 5% level of 

significance, HK commits fully—that is, a 100% weight—on one of these three levels of 

 
3 To get a sense of the popularity, albeit somewhat unscientifically, we conducted several Googles searches on June 
15, 2021. Keywords “forecast package” generates 85.6 million results and “forecast package in R” 39.3 million. The 
specific function that executes the HK algorithm is auto.arima. Keywords “auto.arima” generates 2.7 million. 
4 When forecasters approach real world data that are not simulated, and the default setting is more likely to be 
deployed. Later research can further investigate whether results are robust against changes in the setting. 



differencing. Next, an information criterion is used to select the order of autoregression (𝑝) and 

moving average (𝑞). 

 Differencing after pre-testing for a unit root is a convenient but not always appropriate 

method of rendering a non-stationary series stationary. Size distortion, lack of power, the presence 

of outliers or structural breaks, etc. can all affect the results of unit root tests. For example, consider 

a single simulated time-series used in an out-of-sample forecasting exercise. Even on a single time-

series we find that the unit root tests can behave erratically as the sample length increases (i.e., as 

time progresses), even though our simulated data is a linear ARIMA process throughout the sample. 

One possible alternative to pre-testing, which we explore, is to not rely on any unit root test at all. 

Our AVG approach consists of first imposing each level of differencing (0, 1, or 2), then, 

conditional on the difference, using the second step of the HK algorithm to determine the order of 

autoregression (𝑝) and moving average (𝑞). Finally, we assign 1/3 weight to each of the forecasts 

from these three ARIMA models. 

  

 

3. The Monte Carlo and Out-of-Sample Forecast Design 

Data Generating Processes 

For simplicity, we use an AR(1) model. The first DGP group assumes an autoregressive structure 

with the possibility of a random walk when the AR(1) parameter equals one. 

 

  𝑦! = 𝑎 + 𝑏𝑦!"# + 𝜀!.  (1) 

 

For simplicity, we restrict 𝑎 = 0. We allow 𝑏 ∈ {0.90, 0.95, 0.975, 0.99, 1.00}. Focusing on 𝑏 ≥

0.9 covers the area in which a unit root test may have either size distortion or lack of power 

especially when the sample is small. Many macroeconomic series that exhibit slow mean reversion 

behavior, such as the unemployment rate or the real exchange rate, can be represented by this DGP. 

Other than the case 𝑏 = 1, DGP (1) can be described as a process that is persistent yet stationary. 

When 𝑏 = 0.975 or 0.99, we have a near unit root process. 

 The second DGP assumes a similar structure, but for the first difference, 

 

  ∆𝑦! = 𝑎 + (𝑏 − 1)∆𝑦!"# + 𝜂!  (2) 



 

which can be written as  

 

  𝑦! = 𝑎 + 𝑏𝑦!"# − (𝑏 − 1)𝑦!"$ + 𝜂!. (3) 

  

 We restrict 𝑎 = 0 and allow 𝑏 ∈ {1.50, 2.00}. When 𝑏 = 2, the series is 𝐼(2). When 𝑏 =

1.5, the series is fractionally integrated between 𝐼(0) and 𝐼(2). Note that if 𝑏 = 1, both (1) and (3) 

result in a random walk model without drift. 

 DGP’s (1) and (2) with the set of possible values of 𝑏 cover a plausible range for many 

financial and economic data sets. Particularly relevant for DGP (2) is that Caporale, Gil-Alana and 

Plastun (2019) and Hartl, Tschernig and Weber (2021) both find that series with an order of 

integration above one are more common than previously thought. 

 To simulate data from either DGP, given a number of observations 𝑁, we simulate 1.1 × 𝑁 

observations yt according to (1) and (2) respectively and trim off the first 10%. We fix the 

conditional standard deviation of the processes, by setting the standard deviations of the shocks 𝜀! 

and 𝜂! to 1.  For both DGPs, we consider 𝑁 ∈ {50, 200, 500}.	 For each choice of 𝑁, we perform 

an expanding window forecasting exercise and consider various 𝑘-period-ahead point-forecasts, 

where 𝑘 ∈ {1,3,6,12}.  Because the number of observations is small when 𝑁 = 50, we do not 

consider 𝑘 = 12 for that case. 

 

Out-of-Sample Forecasting 

As mentioned above, we conduct an expanding window pseudo-out-of-sample forecasting exercise 

similar to that of Meese and Rogoff (1983). For any simulated series, we start with an estimation 

period that starts at the first observation and ends at 0.6𝑁𝑡ℎ observation (i.e., the initial estimation 

period covers the first 60% of the sample). Then, we use a statistical model to form the 𝑘-period-

ahead point-forecast. Next, we add one additional observation, and repeat this process. We continue 

to expand the number of observations for estimation by one at each iteration until all data points are 

exhausted. The set of 𝑘-horizon point-forecasts are then compared against the actual data using root 

mean squared errors (RMSE). 

 



The Monte Carlo Design 

All together, given the varying values of the AR(1) parameter, 𝑏; the sample length, 𝑁; and forecast 

horizon, 𝑘, we have 77 sets of experiments. For each set, 1,000 series are simulated. Appendix Table 

1 shows the numbering of our sets and the varying values of the parameters. To get a sense of our 

simulated data, Figure 1 shows the series generated from DGP (1) and (2) for each possible value of 

𝑏 when 𝑁 = 500. 

 

Settings in auto.arima() and Arima()  

• We use the following default options: 

o The maximum possible order of integration is 2. 

o The level of significance for the unit root tests in auto.arima() is five percent.5 

o The information criterion used when selecting the ARMA(p,q) order is the corrected 

Akaike Information Criterion (AICc). 

• Since we know we are using a (possibly integrated) AR(1) model, we set: 

o The combined maximum order of p and q to 3 for auto.arima(); i.e. max.order=3. 

o We do not consider seasonal ARIMA models; i.e. we set seasonal=FALSE. 

 

4. Results 

After simulating data and forming forecasts for each of the 77 sets, we compare forecast accuracy 

across four models: (1) HK with the KPSS test (default), (2) HK with the ADF test, (3) HK with the 

PP test, (4) the model average (“AVG”) described in section 2. 

To measure forecast accuracy, we compute the Monte Carlo mean RMSE from the 1,000 

simulations for each model: 

 

  𝑅𝑀𝑆𝐸HHHHHHHH% = ∑ '()*!,#
$%%%
#&$

#+++
  (4) 

 

and rank them to determine the winner in each set, where i is the 𝑖-th simulation in the set and 𝑚 

denotes the model. Models resulting in a lower mean RMSE have better forecast performance. 

 
5 Also assumed in Hyndman and Athanasopoulos (2018). In recent years, such a default has been questioned (e.g. 
Ziliak and McCloskey, 2007; Wasserstein and Lazar, 2016; Amrhein, Greenland and McShane, 2019). 



 To get a sense of relative differences in RMSEs, we compute a few additional measures. 

Since we fix the conditional SD of the error terms in the simulations, the unconditional SD, which 

also depends on the value of b, differs across different generated time-series. To make it easier to 

compare relative performance across different simulations and forecast horizons, we first compute 

the relative mean RMSE for each simulation which is given by:  

 

  𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑅𝑀𝑆𝐸 = '()*,,,,,,,,!
'()*,,,,,,,,'#(()*

  (5) 

 

where Winner denotes the model with the lowest absolute RMSE (given in equation (4)). Next , for a 

given experiment, we compute the average of the relative RMSE across each of the 1,000 

simulations: 

 

  𝑀𝑒𝑎𝑛	𝑅𝑎𝑡𝑖𝑜 = 	∑ '()*!,#
'()*'#(()*,#

#+++
-.#  (6) 

 

 Further, we can compute a 𝑝-value based using 𝑅𝑀𝑆𝐸%,-/𝑅𝑀𝑆𝐸0-1123,- , 

 

  𝑝 − 𝑣𝑎𝑙𝑢𝑒 = ∑ 𝐼#+++
-.# S '()*!,#

'()*'#(()*,#
≤ 1U 1000V  (7) 

 

Depending on the mean ratio and the p-value may result in different rankings that the mean 

absolute RMSE given in (4).  

The ranking based on (4) and other summary statistics are reported in Appendix Table 2. From the 

table, we observe that: 

(i) PP has the lowest mean RMSE in 37 out of the 77 sets, followed by KPSS with 23 

and ADF with 14. AVG only has 3. In fact, each of the three HK models considered (i.e., HK with 

any unit root test) beats AVG in 64 of the 77 sets. Using this criterion, we can conclude that the unit 

root tests are useful. Surprisingly, these results also suggest that in many cases, using the PP test 

generates better forecast performance than does using the default KPSS test. 

(ii) The 𝑝-values among the top three models in any given set is in general high. When 

𝑁 = 500, the RMSEs from the last place model is consistently larger than that from the winner. 



Because AVG is placed last 64 out of 77 times, we can conclude – perhaps unsurprisingly – that the 

unit root tests are especially useful in large samples.  

(iii) We observe larger gaps in relative RMSE (5) and mean ratio (6) between models 

when the order of integration increases. Therefore, it seems that as the order of integration 

increases, it becomes more important to accurately identify the presence of integration. 

 As an alternative form of summary, we analyze the 77 outcomes using a multinomial logit 

model where the dependent variable is the winning model (KPSS, ADF, PP, and model averaging) 

and the independent variables are the sample size, horizon, and the integration order. Without loss 

of generality, we use KPSS as the baseline model.  

 The results are reported in Table 1, and they are consistent with our findings above.  First, 

when we control for the sample size, the forecast horizon and the order of integration, PP is 

frequently superior to KPSS.6 In the second row, we see that the estimate on the order of integration 

is relatively large, at -1.051. While the p-value is also fairly high (above 10%), the large point estimate 

suggests that the advantage from using the PP test (rather than the KPSS test) may decline 

somewhat when the order of integration is high.  

 Second, at first glance, the ADF test also appears to out-perform the KPSS test (since, like 

the PP test, it also has a large and significant constant term). However, it does not fare well when the 

order of integration is one or higher. With an estimate of -3.766, it offsets the positive constant term 

(3.987) when the order of integration is one, and more than offsets it when the order of integration 

is 1.5 or 2.  

 Finally, our model average of I(0), I(1), and I(2) models,  which we call AVG,  is clearly 

inferior to the default KPSS test. Even though the constant term is estimated at a positive value of 

3.715, it is offset by the negative estimate for the parameter for 𝑁—even when 𝑁 = 50 which is the 

smallest in our Monte Carlo, the product of -0.111 and 50 is -5.55, more than offsetting the positive 

constant. When 𝑁 is 200 or 500, the negative impact would become even larger. This result once 

again implies that unit root tests are useful and become increasingly so as the sample size increases.  

5. Conclusion 

 
6 This can be seen in first column of the second row, since there is a positive constant (and small p-value) associated 
with the PP test. 



 We use the forecast package in R, specifically the auto.arima() function, to examine the 

forecasting performance of various approaches to unit-root testing in a Monte Carlo exercise. We 

are particularly interested in the Hyndman-Khandakar algorithm as it makes use of unit root tests to 

determine the appropriate number of differences to ensure stationarity before selecting an ARIMA 

model and forecasting. We have shown that both the HK algorithm and the unit root tests are useful 

for forecasting.  

 Our results constitute an important contribution to this literature. Previously, Diebold and 

Kilian (2000) examined the performance of the ADF test for forecasting in a relatively narrow 

context. Our study includes other unit root tests as well as a model-averaging alternative that 

represents ignorance of the test results. We also generalize the Monte Carlo exercise by considering 

different orders of integration, as well as near unit root processes. Our results imply that the Philips-

Perron test may generate better forecast than the KPSS or ADF tests when the DGP is linear and 

the errors are normally distributed.  

 For forecast practitioners, our results suggest that relying solely on the the KPSS test may 

result in worse forecast performance for near-unit root, I(1), fractionally integrated, or I(2) 

processes, and that using the PP test for these types of series would lead to an increase in expected 

forecast accuracy. Of course, while the patterns of integration listed above capture many real-world 

time-series, many other real-world series feature nonlinearities or outliers in addition to (or in lieu of) 

these patterns of integration. We leave the study of the performance of unit root tests and the HK 

algorithm in these more complicated environments to future research. 
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Table 1: Summary Results from a Multinomial LOGIT Regression 
 

 Constant Sample Size Horizon Integration 
ADF 3.987*** 

(1.200) 
-0.002 
(0.019) 

0.047 
(0.095) 

-3.766*** 
(0.656) 

PP 2.266** 
(1.081) 

-0.002 
(0.002) 

0.030 
(0.071) 

-1.051 
(0.676) 

AVG 3.715** 
(1.638) 

-0.111*** 
(0.007) 

0.024 
(0.336) 

1.076 
(0.971) 

Pseudo 𝑅$ 0.118 
Robust standard errors reported in parentheses. *** p-value below 1% with null hypothesis that the 
parameter is equal to zero. 
  



Figure 1: Sample Simulated Series 
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