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Abstract

I apply a recently developed Markov Switching Time-Varying Parameter (MS-TVP)
model to test for bubbles in asset markets. In particular, I adapt the model put
forth in Eo and Kim (2012), which takes advantage of the use of hierarchical priors
governing the evolution of time-varying parameters in a Markov switching model, to
the Augmented Dickey-Fuller (ADF) test for asset bubbles proposed in Hall et al.
(1999). This paper expands on the prior literature in two important directions. First,
it introduces Bayesian estimation and inference to Hall et al.’s (1999) ADF bubble test.
Next, it allows the parameters in the Hall et al. (1999) model to change upon entering
each episode of a high return and slow return regime. I find that for periodically
collapsing bubbles generated according to the process introduced in Evans (1991), both
the MS-TVP and the Bayesian Hall et al. (1999) tests have similar power to detect
bubbles.
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1 Introduction

Policymakers at the Federal Reserve believe that it is vital to determine whether a price

bubble exists in important asset markets.1 While the appropriate steps to take after recog-

nizing the existence of the bubble are debatable, in order to take any action it would first be

necessary to know that the bubble existed. However, as the transcript of the Federal Open

Market Committee meeting from June 29 to June 30, 2005 indicates, even during the peak

of the massive U.S. housing bubble, policymakers were in disagreement over whether the

housing market was in a bubble. This disagreement highlights an important and surprising

deficiency in the asset bubble literature - the lack of existence of a powerful and broadly

agreed upon test for asset bubbles.

Due to this deficiency, I propose a new test that generalizes the Markov switching test

for explosive roots in Hall et al. (1999). Specifically, I allow the parameters of Hall et al.’s

(1999) model to vary over time. In principle, this should allow the detection of multiple

bubbles in the same sample, even if the growth rates of the bubbles differ. At the same

time, I introduce Bayesian estimation of this model and use Bayesian model comparison to

decide between competing models, rather than using the classical confidence interval-based

inference used in Hall et al. (1999). This Bayesian perspective allows me to easily test jointly

for both switching in the price dynamics and an explosive root, whereas Hall et al. (1999)

tested only for the presence of an explosive root.

To investigate the power of my proposed test, I use artificially generated price series that

contain periodically collapsing bubbles. I first estimate the constant parameter Hall et al.

(1999) model using Bayesian methods and altering Hall et al.’s (1999) testing procedure

slightly to jointly test for both an explosive root and Markov switching. Next, I estimate

my proposed time-varying parameter generalization. I find that for a test with 5% size,

Bayesian estimation and testing of both the constant parameter Hall et al. (1999) model

1This is evident from a speech given on February 7, 2013 by Federal Reserve Governor Jeremy Stein
entitled “Overheating in Credit Markets: Origins, Measurement, and Policy Responses”. A transcript of
this speech available at: http://www.federalreserve.gov/newsevents/speech/stein20130207a.pdf
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and the more general time-varying parameter model are able to detect these periodically

collapsing bubbles nearly 80% of the time.

The idea to econometrically test for bubbles in asset markets has been around for decades,

originating shortly after the variance bound tests that were proposed contemporaneously by

Shiller (1981) and LeRoy and Porter (1981). These tests attempt to determine whether the

observed variance of actual asset prices exceeds the variance bound implied by the frequently

used risk-neutral asset pricing equation. Tirole (1985) and Blanchard and Watson (1982)

suggest that these variance bounds tests be used to detect bubbles, but Flood et al. (1994)

eventually showed that variance bounds tests were actually very poorly suited to test for

bubbles, since in the presence of a bubble, the variance would not exceed the bound implied

by the test.

Another bubble testing procedure was put forth by West (1987), who suggests the use

of a two-step test which estimates the relationship between dividends and stock prices both

directly and indirectly. If the estimated relationship differs between the two methods, and

the researcher is reasonably certain that they have specified the model correctly, then there

exists evidence in favor of a bubble. The major problem with this test is that under different

model specifications, researchers have come to different conclusions about the existence of

bubbles in U.S. stock prices.

Yet another take on bubble testing was put forward by Diba and Grossman (1988), who

use the integration/cointegration properties of dividends and prices to test whether prices

take on the integration properties of the dividend process. If they do then there is no bubble,

since as suggested by theory, the dynamic properties of the price series depends only on the

process followed by the dividends. However, if the price series displays integration patterns

that are not shared with the dividend process, then this would suggest that something else

is also driving asset prices. If we are sure that dividends are the only relevant fundamental,

then we would conclude that there is a bubble in asset prices.

More specifically, Diba and Grossman (1988) use an Augmented Dickey-Fuller (ADF)
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test in order to test both first differenced prices and first differenced dividends for a unit

root. If first differenced prices display a unit root, but first differenced dividends do not,

then the price series is consistent with a bubble. Using this test on generated price series

data using a very simple bubble process that grows exponentially in every period, they find

that their test can detect a bubble 95% of the time.

However, Evans (1991) points out that although the Diba and Grossman (1988) test is

appealing and works well on data generated with a relatively simple bubble process, when

faced with bubbles that grow at different rates in different time periods it loses almost all of

its power, and detects only a handful of bubbles. In order to build on Diba and Grossman’s

(1988) intuitive and appealing idea for a bubble test, Hall et al. (1999) generalize the Diba

and Grossman (1988) test. First, they test for an explosive root in the levels of prices and

dividends, rather than testing for a unit root in the first differences. Next, they allow the

parameters of this test to alternate between two regimes according to a Markov switching

process. This allows the test to capture the fact that the bubble is growing much faster in

some periods than in others, and will allow at least a subset of periods to be consistent with

a bubble. In practice, Hall et al. (1999) find that their test is capable of detecting the Evans

(1991) style bubbles about 60% of the time. While this is great improvement over the Diba

and Grossman (1988) test, to the dismay of policymakers who wish to determine whether a

particular asset is in a bubble, it will still miss the presence of a bubble nearly 40% of the

time.

It is through this lens that I introduce a generalization to Hall et al.’s (1999) test for asset

bubbles. First, I bring a Bayesian perspective to the test. Second, I allow for the growth

rates of bubbles to change upon each episode of bubble, so that the test does not restrict

all bubbles in the sample to have the same growth rate. Third, I test jointly for Markov

switching and an explosive root in the price series, while Hall et al. (1999) assume Markov

switching under the null, and test only for an explosive root. I find that jointly testing

proves important for the detection of bubbles that follow Evans’ (1991) bubble generation
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procedure, as it improves the detection rate to nearly 80%. Allowing for differing growth rates

does not meaningfully alter the ability of the test to detect for bubbles in this environment,

but this may be simply because in expectation, all bubbles all grow at the same rate under

this process.

The rest of the paper is organized as follows. In section two, I present some background

on rational bubbles and provide more details for the bubble tests that are most closely related

to my new bubble test. In section three, I outline my test, based on Eo and Kim (2012),

which allows the parameters of a Markov switching ADF test to vary over time. In section

four, I detail estimation procedures for both the Bayesian implementation of Hall et al.’s

(1999) model as well as the MS-TVP model. and Bayesian model comparison. In section

five I introduce Bayesian model comparison and outline my testing procedure. In section six

I present my results. I conclude in section seven.

2 Rational Bubbles, Testing, and Periodically Collaps-

ing Bubbles

2.1 Rational Bubbles

Historically, many bubble tests are designed to detect “rational” bubbles. These include

the early variance bounds tests developed by Shiller (1981) and LeRoy and Porter (1981), and

implemented by Cochrane (1992); the “two-step” tests developed in West (1987); and the

integration/cointegration test developed in Diba and Grossman (1988).2 However, before we

can properly discuss bubble testing, we must specify what we mean by a “rational” bubble.

Rational bubbles are periods during which agents are willing to pay more for an asset than

the asset’s fundamental value, which is the value implied by the present value of expected

future dividend streams. The reason that these agents are willing pay a premium during

2See Gürkaynak (2008) for more detail.
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a rational bubble is that they anticipate being able to sell the asset for more than the

fundamental value at a later date. This bubble is rational in the sense that if everyone

shares this belief, then the asset is priced correctly despite the fact that it trades for more

than its fundamental value.

We can mathematically formalize the above intuition in a simple asset pricing framework.

First, assume that there is an infinitely-lived representative agent, who seeks to maximize

expected lifetime utility in an endowment economy:

max
ct

Et

[
∞∑
i=0

βiu(ct+i)

]

s.t. ct+i = yt+i + (pt+i + dt+i)xt+i−1 − pt+ixt+i

Where yt is the income of the agent at time t, xt is the number of units of the asset held

by the agent in period t, pt is the price of the asset in period t, dt is the dividend paid to

those holding the asset at the beginning of period t, and 0 < β < 1 is the discount rate of

the representative agent.

We can derive the Euler equation using a variational argument. Using the consumption

good, ct, as the numeraire, we consider the gains and losses from giving up a unit of con-

sumption in order to buy the asset today, and we define the net one-period rate of return

from holding an asset as:

rt+1 =
pt+1 + dt+1

pt
− 1

Then we can see that:

u′(ct) = Etβ(1 + rt+1)u
′(ct+1)

In words, if we give up a unit of consumption today, then we can use the proceeds to buy

the asset, but we lose the marginal utility that the unit of consumption would give us today.
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However, tomorrow we will be able to consume (1 + rt+1) units of the consumption good,

since we can consume the one-period return given by the asset. Therefore, tomorrow we will

gain the marginal utility of consuming (1 + rt+1) units of the consumption good. Taking

into account the fact that we will not get this utility until tomorrow, we average across all

possible returns by using the expectations operator and discount the future utility using the

discount factor β.

Using our definition of the net return, rt+1, we can substitute and solve directly for the

price of the asset today:

pt = βEt

{
(pt+1 + dt+1)

u′(ct+1)

u′(ct)

}

Assuming risk-neutral preferences, we have u′(ct) = u′(ct+1) = k ∀ ct, where k is a

constant. We can then rewrite the above equation as:

pt = βEt(pt+1 + dt+1) (1)

We can find a particular solution to this first-order difference equation by using the law

of iterated expectations and iterating on the above equation:

pt =
s∑
i=1

βiEtdt+i + βsEtpt+s

Taking the limit as s→∞, we can see that as long as βsEtpt+s → 0, we have the solution:

pt =
∞∑
i=1

βiEtdt+i = Ft

This solution is called the fundamental solution, since the price today relies only on the ex-

pected value of the future dividend stream. This solution is ensured by imposing a transver-

sality condition on the value of the agent’s savings, and that is usual practice in asset pricing
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models with infinitely lived agents.

However, there is another solution for the first order difference equation in equation (1):

pt = Ft +Bt (2)

where Bt, the bubble component of the solution, is any random variable that satisfies:

Bt = βEtBt+1 (3)

We verify that this is a solution to equation (1) by a direct proof, given below. First,

assume that equations (2) and (3) constitute a solution to (1). Then we have:

pt = βEt(pt+1 + dt+1)

Ft +Bt = βEt(Ft+1 +Bt+1 + dt+1)

∞∑
i=1

βiEtdt+i + βEtBt+1 = β

(
∞∑
i=2

βiEtdt+i + βEtBt+2 + Etdt+1

)
∞∑
i=1

βiEtdt+i + βEtBt+1 =

(
∞∑
i=1

βiEtdt+i + β2EtBt+2

)

βEtBt+1 = β2EtBt+2

EtBt+1 = βEtBt+2 (4)

Iterating equation (3) forward one period, and using the law of iterated expectations, we

have:

Bt+1 = βEt+1Bt+2

EtBt+1 = βEtBt+2

which shows that the equality in equation (4) always holds, and verifies that equation (2)

nests an entire class of solutions, so long as equation (3) also holds. �
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Finally, note that bubbles of this type are usually ruled out by imposing a transversality

condition. In fact, Tirole (1982) argues that bubbles can always be ruled out in infinitely

lived rational expectations models. However, it is common practice in the bubble testing

literature to abstract away from this theoretical argument, and work from the assumption

that equations (2) and (3) define the asset price.3 This approach is somewhat justified by

the fact that Tirole (1985) shows that rational bubbles can exist in overlapping generations

models, and by the fact that Kindleberger (2000) finds numerous examples of asset bubbles

throughout modern history. As pointed out by Evans (1991), if these observed bubbles are

not “rational”, then a desirable feature of a bubble test would be that it has power against

many different bubble specifications.

2.2 Imposing Structure on the General Solution

In order to devise a test for rational asset bubbles, it is necessary to put more structure

on the problem above. It is particularly helpful to define dynamic equations for both the

dividend and the bubble component. For the dividend component, the typical assumption is

that dt is integrated of order one, i.e. it is I(1).4 Specifically, dt is usually assumed to follow

a random walk with drift:5

dt = µ+ dt−1 + εt (5)

Then there are two possible scenarios: the asset price does not contain a bubble component,

Bt, or the asset price does contain a bubble component.

In the absence of a bubble component, Bt, we have pt = Ft, and it can be shown that pt

3See Gürkaynak (2008)
4In a model with dynamic growth, the assumption is instead that ln(dt) is I(1). However, we will usually

be working in the relatively simpler set-up outlined in the text.
5We use a random walk for expositional purposes, but the analysis remains the same for any stationary

ARMA process for ∆dt. See Evans (1991) for more details.
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is also I(1) and that pt and dt are cointegrated. Furthermore, we have:

EtFt+i =
β

(1− β)
(dt + µi) +

β

1− β
µ

which becomes dominated by β
(1−β)µi as i gets large.6 This implies that the forecast of the

fundamental value grows linearly over time, increasing by β
(1−β)µ each period, and reflects

the unit root in the process for dt.

In addition, rearranging equation (3) and using the law of iterated expectations, we can

show that the time t expectation of the bubble component at time t+ i is given by:

EtBt+i =
1

βi
Bt

Therefore, as pointed out in Evans (1991), the conditional expectation of the bubble com-

ponent grows at rate 1
β
> 1. Combining the two components, we can see that as i gets large

we have:

Etpt+i →
β

(1− β)
µi+

1

βi
Bt

Provided Bt > 0, eventually the exponential growth of the bubble component will overwhelm

the linear growth of the fundamental component, and the forecast of the price will explode

to infinity at the rate of the growth of the bubble component, 1
β
.

With the additional structure we have put on the asset pricing model, we have a testable

hypothesis. If the price of the asset grows faster than the underlying fundamentals grow,

then there is a bubble in the asset price.7 It is using this logic that Diba & Grossman

designed their test for bubbles in asset markets.

6In general, from Beveridge and Nelson (1981), we know that if dt follows a stationary ARMA process,
then as j tends to infinity, EtFt+j → Ct + jE(∆Ft) for some Ct. See also Evans (1991).

7Of course, this assumes that all fundamentals are observable.
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2.3 Diba and Grossman (1988) Test

Diba and Grossman’s (1988) idea is to exploit the specification of a rational bubble, noting

that if the price of the asset contained a bubble component, the asset price would grow at

a rate faster than suggested by the growth rate of the fundamental process. Furthermore,

Diba and Grossman (1988) provide the additional insight that if the fundamental process,

dt is I(1), then the fundamental is stationarity in first differences. Therefore, if there is no

bubble component, then the first difference of the asset price, ∆pt, would also be stationary.

However, in the presence of an exponentially growing bubble component, differencing

prices any finite number of times will not yield a stationary process for ∆pt. In fact, in

the presence of a bubble component, the fundamental and the asset price would not be

cointegrated. Therefore, Diba and Grossman (1988) propose the following test:8

1. Test pt and dt for stationarity.

2. If both pt and dt are non-stationary test pt and dt for cointegration.

3. If they are cointegrated, conclude that there is no bubble.

4. If they are not, then conclude that we cannot rule out the existence of a bubble.

In fact, if we were certain that we had included all relevant measures of fundamentals in

dt, then the lack of stationarity in the price series or the lack of cointegration between the

price series and the fundamental series would indicate the presence of a bubble.

Diba and Grossman (1988) use this test on 100 simulated series, each lasting 100 periods

and containing an explosive bubble component that evolves according to Bt+1 = (1 + r)Bt +

zt+1, where r = 0.05 and zt+1 ∼ iid N(0, σz). They find that their test has high power to

detect a bubble, as 95% of their simulated price series are nonstationary in first differences.

However, as pointed out in Evans (1991), the process assumed for the evolution of the bubble

8They also propose other, similar tests, such as testing the first differences of both series for stationarity.
All of their proposed tests have approximately the same power, and were shown in Evans (1991) to have low
power against periodically collapsing bubbles.
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may be overly simplistic, since it assumes that a bubble will grow at an exponential rate,

with a small amount of noise, forever.

Figure 1: Typical Diba and Grossman Bubble
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2.4 Evans (1991) Bubble Process

Evans (1991) astutely observes that in the real world, bubbles could not possibly have the

form hypothesized by Diba and Grossman (1988). That is, no one thinks that an asset bubble

could grow unabated forever. In fact, all of the dozens of examples of historical bubbles cited

in Kindleberger (2000) eventually collapsed. Therefore, Evans proposes a process for bubbles

that allows them to periodically collapse, and shows that the tests suggested by Diba and

Grossman (1988) have very little power to detect this more realistic type of bubble.

Evans (1991) retains the same risk neutral asset market set-up considered in Diba and

Grossman (1988), and assumes that dividends evolve according to equation (5). However,

he proposes the following formulation for the bubble component:

Bt+1 =

 (1 + r)Btut+1 if Bt ≤ α[
δ + 1+r

π

(
Bt − δ

1+r

)
ξt+1

]
ut+1 if Bt > α
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Where δ and α are scalars that satisfy 0 < δ < (1 + r)α, ut is a sequence of i.i.d. random

variables with Etut+1 = 1:

ut = exp

(
zt −

σ2
z

2

)
zt ∼ N(0, σ2

z)

and ξt is an exogenous i.i.d. Bernoulli process such that:

Pr(ξt = 0) = 1− π

Pr(ξt = 1) = π

In words, the bubble process follows a linear switching process. Recall from equation (3)

that a rational bubble component must satisfy:

Bt = βEtBt+1

Therefore, we need to verify that the above process satisfies this requirement. When Bt ≤ α,

we have:

EtBt+1 = Et(1 + r)Btut+1

EtBt+1 = (1 + r)BtEtut+1

EtBt+1 = (1 + r)Bt

Bt = βEtBt+1

where we have used the fact that in equilibrium, 1
β

= (1 + r).
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If instead, Bt > α, we have:

EtBt+1 = Et

{[
δ +

1 + r

π

(
Bt −

δ

1 + r

)
ξt+1

]
ut+1

}
EtBt+1 = Et

{
δut+1 +

1 + r

π

(
Bt −

δ

1 + r

)
ξt+1ut+1

}
EtBt+1 = δEtut+1 +

1 + r

π

(
Bt −

δ

1 + r

)
Etξt+1ut+1

EtBt+1 = δ +
1 + r

π

(
Bt −

δ

1 + r

)
π

EtBt+1 = δ + (1 + r)

(
Bt −

δ

1 + r

)
EtBt+1 = δ + (1 + r)Bt − δ

EtBt+1 = (1 + r)Bt

Bt = βEtBt+1

where, in order to go from line 3 to line 4 we have used the fact that ξt+1 and ut+1 are each

i.i.d. random variables, with E(ξt+1) = π and E(ut+1) = 1.

Now that we know that this bubble process conforms to the requirement for a rational

bubble, we can analyze some of its properties. If Bt ≤ α, then the bubble grows at rate

1
β
. However, once the size of the bubble exceeds the predetermined level α, then it will

grow at the faster rate, Bt

βπ
if ξt+1 = 1. However, if ξt+1 = 0, then the bubble collapses to

δut+1. Therefore, 1 − π is the probability of the bubble collapsing each period. Once the

bubble collapses, it will return to growing at the slower rate, 1
β
, until it eventually exceeds

the exogenously given scalar α.

After generating 200 price series, using the same fundamentals process as Diba and

Grossman (1988), but his newly proposed collapsing bubbles for the bubble component,

Evans tests these series for the presence of a bubble by using Diba and Grossman’s (1988)

proposed unit root and cointegration tests.9 He finds that these tests perform extremely

9See the appendix for full detail and the particular parameter values chosen in Evans (1991).
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Figure 2: Typical Evans Bubble
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poorly, and detect only a handful10 of bubbles in these generated price series. Since these

collapsing bubbles are a much more plausible bubble generating process than the process set

forth in Diba and Grossman (1988), Evans (1991) concludes that the Diba and Grossman

(1988) test for asset bubbles is insufficient, and that work should be done to devise a more

powerful and flexible bubble test.

2.5 Hall et al.’s (1999) Test for bubbles

Hall et al. (1999) take up the call to action in Evans (1991), and attempt to design a

bubble test that is more able to detect the presence of periodically collapsing bubbles than

the tests presented in Diba and Grossman (1988). To do so, they return to the Augmented

Dickey Fuller (ADF) test that was used in Diba and Grossman (1988), with two main

differences. In Diba and Grossman (1988), this ADF test was used to test for the presence

of a unit root in pt or ∆pt. In Hall et al. (1999), the authors instead modify this test to test

for an explosive root in pt. Furthermore, Hall et al. (1999) allow the parameters of the test

to switch between two regimes: a low return regime and a high return regime.

10It is hard to tell from the table presented in Evans (1991). However, it appears that at most three of
the 200 bubbles were detected.
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The equation that Hall et al. (1999) estimate to conduct their test for an explosive root

in the level of the price series, pt, is given below:

∆pt = µ0(1− St) + µ1St + [φ0(1− St) + φ1St]pt−1 +
k∑
j=1

[ψ0,j(1− St) + ψ1,jSt]∆pt−j + σeet

St ∈ {0, 1}

Here, St is an indicator variable, indicating whether we are in a low return regime (St =

1), or a high return regime (St=0). If these regimes were directly observable, then we could

estimate the above equation by treating St as a dummy variable. It may be helpful to break

this equation into its piecewise components before discussing it further:

∆pt =

µ0 + φ0pt−1 +
∑k

j=1 ψ0,j∆pt−j + σeet if St = 0

µ1 + φ1pt−1 +
∑k

j=1 ψ1,j∆pt−j + σeet if St = 1

Here, pt is the price series of interest,11 φi is the AR(1) parameter determining the impact of

pt−1 on pt. ψi,j is the coefficient on the jth lag of the price series, for j ≥ 2, which determines

how pt−j impacts pt.

Finally, the interpretation of µi depends on the estimation of φi. For φi < 1, µi
1−φi is

the mean of the price series in regime i. For φi = 1, µi is the drift (i.e. time trend) of the

random walk process for the price series. If φi > 1, then µi helps determine (along with φi)

the level of the price series that determines whether the explosive price process is exploding

to negative or positive infinity.

However, a problem with the procedure outlined above is that the researcher will not

know which periods constitute a high return or low return regime, so the regime dummy

variable, St is unobserved. Therefore, Hall et al. (1999) estimate these regimes using a

Markov switching model. In this model, the researcher assumes that the probability of

11In applied empirical work (looking at S&P data, for instance), this will actually be the log of the price
series. In my simple price generation equations, I can simply use the level of prices.
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moving from regime i in period t − 1 to regime j in period t depends only on what regime

the price process was in in period t − 1. Since there are two regimes in the model, then

there are four possible transitions that occur, with probabilities given by pij for i, j ∈ {0, 1},

where pij is the probability of switching from regime i in period t− 1 to regime j in period

t.

The testing procedure is as follows:

1. Estimate the Markov switching model via Maximum Likelihood estimation.

2. Use bootstrapping to find a one-sided 95% confidence interval against which to test

the presence of an explosive root in the high return regime.

3. If this test confirms that the price series, pt, has an explosive root, but the fundamental

series does not, then the price series is consistent with the presence of a bubble.

4. However, if the price series does not have an explosive root, or if both the price series

and its corresponding fundamental have an explosive root, then conclude that there is

not a bubble.

This generalization of the ADF test goes a long way in allowing Hall et al. (1999) detect

the presence of bubbles. Using the equations above, and performing maximum likelihood

estimation with bootstrapped errors, Hall et al. (1999) find that the high return regime has

an explosive root over 75% of the time. Because the existence of a bubble is only confirmed

when the price has an explosive root but dividends do not, Hall et al. (1999) are only

able to classify about 60% of their price series as containing a bubble. Compared to the

results in Evans (1991), which detected only a handful of bubbles out of 200, this is a great

improvement. However, the results may be disappointing to policymakers, as this test still

misses about 40% of these seemingly realistic type of bubbles.

Since Hall et al. (1999), there have been more attempts to improve bubble testing. Some

recently developed tests, such as Phillips et al. (2011), use recursive tests to test for bubbles
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and remain agnostic about the structural form of the regime. Using Phillips et al.’s (2011)

estimation technique has two desirable features. First, Phillips and Magdalinos (2007) have

worked out limit theory for mildly explosive processes, and Phillips et al. (2011) are able

to apply that theory to their bubble testing procedure to test directly for explosive roots

without the need for bootstrapping, a computationally intensive procedure that Hall et al.

(1999) needed to undertake to estimate the distribution of the AR(1) parameter under an

explosive processes. Second, it allows the researcher to date-stamp the beginning and ending

dates of bubbles, although this can also be done in the Markov Switching framework by using

the estimated regime probabilities. However, using the feasible parameters used by Evans

(1991) and Hall et al. (1999), Phillips et al.’s (2011) test detects the presence of a bubble

only 43.2% of the time.12

3 MS-TVP Model

Due to the relatively low power of existing bubble tests, there remains a deficiency in

the bubble testing literature. In order to try to increase the power of existing bubble tests,

I generalize Hall et al.’s (1999) test by allowing the AR parameters in their MS model to

evolve according to a random walk each time the price series enters a high return or low

return regime. My test uses Bayesian inference, and therefore admits the use of hierarchical

priors, as suggested by Koop and Potter (2007), which makes estimation of this test feasible

via Gibbs sampling.

To see where the time-varying nature of my test may be particularly helpful, consider the

following example. Suppose that there are three different bubbles in our sample, which is a

reasonable number for both Evans’ (1991) generated price series and for the entire history

of S&P 500 stock data. Assume that two of the three bubbles are very large, with very

high growth rates, while the third is relatively small, with a slower growth rate. Then the

12This test performs much better for slightly different parameterizations of Evans (1991) bubble generation
process that could still be considered realistic.
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fixed parameter Hall et al. (1999) test may find the two large bubbles, and estimate a large

value for φ0, the AR(1) coefficient in the high growth regime. Since the estimated φ0 is

so large, the Hall et al. (1999) test may not detect the third bubble, since it will be more

qualitatively similar to the slow growth regime than the bubble regime. However, the new

model with time varying parameters should be able to detect this third bubble. Since the

AR(1) coefficient in the high growth regime, φ0,t can change over time, it will be higher

during the two large bubbles, and lower, but still explosive, during the third bubble. With

this intuition in mind, I will present my generalization of the Hall et al. (1999) test below.

3.1 Eo & Kim’s Model Applied to the ADF Test

In Eo and Kim (2012), the authors present a newly developed MS-TVP model in the

context of GDP growth and identification of recessions. Eo and Kim (2012) were trying

to overcome a similar problem to the example presented above - that Hamilton’s (1989)

Markov switching model with constant coefficients did a poor job at identifying relatively

mild recessions, like the one in 2001. While Eo and Kim (2012) only consider a model that

has no autoregressive components, so that it is only a mean switching model, it is easy to

generalize their model to one with lags. Then the MS-TVP Augmented Dickey fuller test

can be written as:

∆pt = µ0,τ (1− St) + µ1,τSt + [φ0,τ (1− St) + φ1,τSt]pt−1 +

k∑
j=1

[ψ0,τ,j(1− St) + ψ1,τ,jSt]∆pt−j + σeet

Let β0,τ = [µ0,τ φ0,τ ψ0,τ,1 . . . ψ0,τ,k]
′ and β1,τ = [µ1,τ φ1,τ ψ1,τ,1 . . . ψ1,τ,k]

′ be the vectors

of time varying parameters in regime 0 and regime 1, respectively, in a model with k + 1
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lags. Then the parameters transition according to:

β0,τ
β1,τ

 =

β0,τ−1
β1,τ−1

+

ωβ0,τ
ωβ1,τ


where τ = 1, 2, · · · , N0+N1, and the ωx,τ are white noise shocks particular to each parameter.

In words, τ is the number of the particular realization of the regime. For example, if τ = 1

is the first realization of the high return regime, then τ = 2 is the first realization of the low

return regime, τ = 3 is the second realization of the high return regime, τ = 4 is the second

realization of the low return regime, etc. Therefore N0 is the number of times the price series

has been in the high return regime, N1 is the number of times the price series has been in

the low return regime, and N0 +N1 is the total number of realizations of all regimes.

For estimation, it will be helpful to both collect all parameters in a vector and rewrite

the system in terms of time t instead of τ . First, let βt = [β′0,t β
′
1,t]
′ be the vector of all

estimated coefficients at time t. Then the system can be written in state space form. First

the Measurement Equation (ME):

pt = Htβt + et

Ht = [(1− St)pt−1 Stpt−1 (1− St)∆pt−1 . . . Stpt−k]

et ∼ NID(0, σ2
e)
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Likewise, we can write the State Equation (SE):

βt = Fβt−1 + ωt

F = Ilength(β)

ωt ∼MVN





0

0

...

...

0

0


,



d10,tσ
2
µ0

0 0 0 . . . 0

0 d01,tσ
2
µ1

0 0 . . . 0

0 0 d10,tσ
2
φ0

0 . . . 0

0 0 0
. . . . . . 0

...
...

...
...

. . .
...

0 0 0 0 0 d01,tσ
2
ψ1,k




Here, dij,t is a dummy variable which equals one when t − 1 = i and t = j. Therefore, the

shocks, ωt, are heteroscedastic - a shock to the regime i parameters only occurs when the

price series enters an episode of regime i, and equals 0 otherwise. However, because the

disturbance term in the ME is conditionally Gaussian, we are still able to use the Kalman

Filter to estimate the parameters of this state space model.

4 Estimation

I use Markov Chain Monte Carlo (MCMC) Bayesian estimation techniques to estimate

both Hall et al.’s (1999) model and the time-varying generalization outlined above. In both

estimations, I use a Normal prior on the regression coefficients, a Gamma prior on the inverse

of the variance parameter, and a Beta prior on the regime transition probabilities. These

priors are conditionally conjugate, so they admit the use of the Gibbs sampler, which is the

most efficient form of the more general Metropolis-Hastings MCMC estimation technique.

As stated above, in my estimation I use a Normal prior on all of the regression coefficients,

including the AR(1) coefficient, φi,t, at all points in time. There is a vast literature outlining

the sensitivity with respect to the choice of prior in testing the root of an AR process,
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with primary contributions coming from Sims (1988), Berger and Yang (1994), and Lubrano

(1995). Xia and Griffiths (2012) demonstrate that for Bayesian posterior confidence interval

based tests, a uniform prior over the AR(1) coefficient rejects the null hypothesis of a unit

root too infrequently, but performs much better when using Bayesian model comparison. Of

all the priors considered by Xia and Griffiths (2012), this uniform prior is most similar to

the Normal prior used in this paper.

4.1 Estimation of Hall et al.’s Model

In order to estimate the model presented in Hall et al. (1999), I use the Gibbs sampler

with relatively tight priors on the AR(1) coefficients, but diffuse priors on µi, the variance

parameter, and the transition probabilities. The Gibbs sampler for this model is standard

for a two-state Markov Switching regression with autoregressive parameters. For the sake of

brevity, I omit a detailed description of the sampler here, but the interested reader can find

a detailed exposition of the Gibbs sampler for this model in Kim and Nelson (1999).

Recall that the Hall et al. (1999) model is given by:

∆pt =

µ0 + φ0pt−1 +
∑k

j=1 ψ0,j∆pt−j + σeet if St = 0

µ1 + φ1pt−1 +
∑k

j=1 ψ1,j∆pt−j + σeet if St = 1

Since I will be testing for an explosive root, the prior on the AR(1) coefficient is of extreme

importance. I place a tight prior on the AR(1) coefficient in both regimes. In the high return

regime (regime 0), the prior on φ0 is a Normal distribution with mean zero and standard

deviation set to 0.05 that is truncated to lie above zero (i.e. the AR(1) parameter in the

high return regime is restricted to be consistent with explosive growth). This relatively small

standard deviation reflects our prior knowledge that even when a root is only very slightly

explosive, the process blows up quickly. Therefore, I believe that even in the presence of a

bubble, the explosive root will not be very large. This is reflected by my prior, which holds

that I have roughly 95% confidence that the AR(1) parameter is less than 1.1.
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In the low return regime (regime 1), the prior on the AR(1) parameter, φ1, is also a Normal

distribution with mean zero and standard deviation set to 0.05. However, this distribution

is truncated from above at φ0, in order ensure uniqueness of the likelihood function of the

MS model. This prior again reflects the fact that I believe that the AR(1) parameter is near

0, and if it is explosive, it is probably only very slightly explosive.

4.2 Estimation of MS-TVP Model

As shown in Eo and Kim (2012), with standard prior distributions on the parameters that

are being estimated, the conditional posterior distributions can each be derived analytically,

so we can use the Gibbs sampler to estimate this model. Since this model is less well known,

I will present an overview of the steps involved in the Gibbs sampler below. However, since

my estimation procedure is nearly identical to the procedure discussed at length in Eo and

Kim (2012), I will keep this overview relatively brief.

As in Hall et al.’s (1999) model, the priors on the AR(1) coefficients are very important.

In order to facilitate estimation of the more flexible switching model, I do not center the

prior distributions for the initial conditions for the AR coefficients at zero.13 Instead, for the

AR(1) parameter in the high return regime, I set the prior for the initial condition to 0.05,

and in the low return regime, I set the prior for the initial condition at -0.05, each with a

small variance.

The steps for the Gibbs sampler are as follows:

Step 0:

Initialize the hyperparameters of the model, Ω̃ = [σ2
e σ

2
µ0
σ2
µ1
. . . σ2

ψ1,k
]′, the time-varying

parameters, β̃T = [β1 β2 . . . βT ]′, and transition matrix P̃ =

 p00 1− p00

1− p11 p11


Step 1:

Generate the regime for each time period, S̃T = [S1, S2, . . . , ST ]′, conditional on β̃T , Ω̃, P̃ ,

13This issue is discussed in more detail in section 6
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and data ỸT . This is based on the multi-move sampler developed by Carter and Kohn (1994)

and explained in Kim and Nelson (1999).

Step 2:

Based on the state space model, generate the time-varying parameters:

β̃T = [µ0,T µ1,T φ0,T φ1,T ψ0,1,T ψ1,1,T . . . ψ1,k,T ]′

conditional on Ω̃, S̃T , P̃ , and the data, Ỹt = [p1 p2 . . . pT ]′. This can be done by exploiting

the state space form of the model to run a Carter and Kohn (1994) algorithm utilizing the

Kalman filter.

Step 3:

Generate the hyperparameters of the model, Ω̃, conditional on β̃T , P̃ , S̃T and ỸT . This is

done by exploiting the fact that conditional on the other parameters of the model, each of

the state space equations are line by line OLS, as is the measurement equation.

Step 4:

Generate the matrix of transition probabilities, P̃ , conditional on S̃T .

5 Testing Procedure

The estimation method laid out above gives us parameter estimates the for MS-TVP

model. However, even after obtaining these estimates, I still need to assess the performance

of each test, both in absolute terms and relative to the performance of the Hall et al. (1999)

test. To do so, I use two sets of competing models, and use Bayesian model comparison to

determine which of the two models is more likely.

To assess the performance of the MS-TVP test, I generate 201 time series each consisting

of 100 periods according to Evans’ (1991) dynamic price and bubble equations. Then, to test

for the presence of an explosive root, I specify two competing models. The first comparison

is between the Hall et al. (1999) model and a null model. The second is between the MS-

TVP model and a null model. In order to assess the performance of the MS-TVP model
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relative to the Hall et al. (1999) model, I compare the performance of each test against their

corresponding null models.

For the standard Hall et al. (1999) model, I first estimate the model outlined in section

4.1, restricting the AR(1) process to be explosive in at least one of the two regimes. Next,

I estimate a model that restricts the price series to behave as it would in the absence of a

bubble. In the absence of a bubble, the price series would be driven only by the underlying

fundamental, so two features would change. First, and most obviously, the explosive root

in the price series would be replaced by a unit root. However, it is also the case that there

would be no regime switching, since in the Evans’s (1991) bubble generation procedure,

regime switching is only a feature of the bubble component. Therefore, the second model

simplifies to Bayesian linear regression, with the series restricted to be nonexplosive, i.e. I

restrict φ ≤ 0. Table 1 summarizes these two competing models.

Table 1: Assessing Hall et al.’s (1999) Test

Model Equations Model Restrictions

Model 1 ∆pt = µ0 + φ0pt−1 +
∑k

j=1 ψ0,j∆pt−j + σeet if St = 0 φ0 > 0 (Explosive)

∆pt = µ1 + φ1pt−1 +
∑k

j=1 ψ1,j∆pt−j + σeet if St = 1 φ1 ≤ φ0 (Identifying Restriction)

Model 2 ∆pt = µ+ φpt−1 + +
∑k

j=1 ψj∆pt−j + σeet φ ≤ 0 (Non-explosive)

Next, I do the same for the MS-TVP model. The only difference is that for this model, I

assume that prices follow an AR(1) process in order to reduce the risk of overfitting that is an

ubiquitous concern when using time-varying parameter models. Therefore, when assessing

the performance of the MS-TVP model, I use the following two models:

Table 2: Assessing the MS-TVP Test

Model Equations Model Restrictions

Model 1 ∆pt = µ0,t + φ0,tpt−1 + σeet if St = 0 φ0,t > 0 (Explosive)
∆pt = µ1,t + φ1,tpt−1 + σeet if St = 1 φ1,t ≤ φ0,t (Identifying Restriction)

Model 2 ∆pt = µ+ φpt−1 + σeet φ ≤ 0 (Non-explosive)
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For both assessments, I use Bayesian model comparison to compare Model 1 to Model 2.

In order to do so, I first estimate the marginal density of each model using the decomposition

given in Chib (1995):

m(YT ) =
f(YT |θ̃)π(θ̃)

π(θ̃|YT )
(6)

where θ = [Ω, P ], i.e. it is the collection of all of the hyperparameters that are being

estimated. In equation (1), f(YT |θ̃) is the sampling density, π(θ̃) is the prior density of θ,

and π(θ̃|YT ) is the posterior density of θ, each evaluated at θ = θ̃ where θ̃ is any fixed value

of θ in the posterior distribution. Chib (1995) recommends setting θ̃ equal to a value that

occurs with great frequency, such the posterior mean or median, in order to achieve the most

accurate approximation. In my application, I use the posterior mean.

Recall that in the MS-TVP model, the shocks in the transition equation are heteroscedas-

tic, since they only occur when there is a shift in regimes. Therefore, there is not an easily

computable analytical expression for the sampling density, f(YT |θ̃), in the MS-TVP model.

I estimate it using a simple particle filter, based on Fernández-Villaverde and Rubio-Ramı́rez

(2004), which can be used to approximate the marginal density of any parameterized non-

linear state space model. In order to decrease the impact of numerical estimation error, I

set the number of particles high enough so that to the first decimal place, the filter produces

identical estimates.14

To compute an estimate of π(θ̃|YT ), I use the method suggested in Chib (1995), which

consists of running the Gibbs sampler successively, each time holding an additional element

of θ, the collection of all estimated hyperparameters, at its posterior mean, θ̃. Once I have

the numerically estimated values for both the sampling density and the posterior density, I

can compute the marginal density using the formula in equation (1).

After computing an estimate of the marginal density for each model, I compare the two

models by computing the posterior odds ratio. The posterior odds ratio simply describes

14In practice, I used 20,000 particles.
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how likely one model is relative to another. For example, if the posterior odds ratio for

model one compared to model two is 3.0 (so that the odds are 3:1), then I would say, given

the data, model one is 3
3+1
− 1

3+1
= 50% more likely to have generated it than model two.

In general, the posterior odds ratio of model one compared to model two can be given

as:

pr(m1|YT )

pr(m2|YT )
=
m1(YT )

m2(YT )

pr(m1)

pr(m2)

where mi denotes model i, and pr(m1)
pr(m2)

is the prior odds ratio. In my case I assume equal prior

probability between the two models, so the latter term drops out and equation (1) becomes:

pr(m1|YT )

pr(m2|YT )
=
m1(YT )

m2(YT )
= B12

This makes clear that once I have numerically computed my estimates of the marginal

densities, I have all I need to compare the two models.

Finally, I need to set criteria that determines when I will prefer one model to another. To

do this, I calibrate the testing procedure, by first running competing models on all generated

series of fundamentals. After running these competing models on data that I know has been

generated according to the second model, I compute the odds ratios, and find the odds ratio

for which I would incorrectly prefer model one five percent of the time. In other words, I

calibrate the test such the size of the test is approximately five percent.

For example, when comparing the performance of the MS-TVP model with the non-

explosive linear regression model, this occurs at an odds ratio equal to 2.16. Therefore, if

a given price series has an odds ratio greater than 2.16, and its corresponding fundamental

series has an odds ratio less than 2.16, this suggests the presence of a bubble in the price

series. In other words, since the price series is explosive but the fundamental series is

nonexplosive, this suggests that there is another component aside from the fundamental

that is driving the asset price.
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However, if both the price series and the fundamental series had an odds ratio greater

than 2.16, this would not suggest the existence of a bubble. Since both series are determined

to be explosive, it does not suggest that the something other than the fundamental is driving

the movements in the price of the asset.

6 Results

6.1 Estimation of Generated Data

Although this procedure is fairly straightforward, I did experience practical difficulties

during estimation of the MS-TVP model. When estimating a Markov switching model, we

need to enforce some type of inequality restriction on a subset of the parameters to ensure

uniqueness of the likelihood. In other words, the likelihood function is symmetric - it makes

no difference to the likelihood function whether we label the high return regime as “regime

zero” or “regime one”.

As my procedure requires a forward run of the Kalman filter,15 if I have an “unlucky”

draw of regimes and hyperparameters, the time-varying parameters may wander outside

their restricted region. When I attempt to enforce this restriction on the backward draw

via rejection sampling, my sampler may have to sample billions (or more) of times in order

to find parameters that fit the restriction. Note that Koop and Potter (2011) point out a

similar problem in a time-varying parameter vector autoregression. In their estimation, they

compare a multi-move algorithm, which is similar to the Carter-Kohn algorithm I use in

estimation of my model, and a single-move algorithm. They find that when they use the

multi-move algorithm, their rejection rates are as high as 99.97%. Although in theory the

single-move algorithm mixes at a slower rate, the rejection rate is substantially lower than

the multi-move algorithm, so in practice Koop and Potter (2011) suggest using a single-move

algorithm.

15See Step 2 in the previous section.
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However, Koop and Potter (2011) perform their analysis within a Metropolis-Hastings

setting on a slightly different estimation procedure, so it is not straightforward to generalize

their results to my estimation technique. Therefore, to attempt to solve this problem in

my model, I set the variances time-varying parameters equal to a small constant instead of

estimating them.16

Because estimation along with approximation of the marginal density is relatively com-

putationally intensive, I try to strike a balance between accuracy and timeliness. Auto-

correlation functions and running mean plots on randomly selected time series simulations

suggested the use of at least 5,000 burn-in draws. To be conservative, I chose to use 10,000

burn-in draws. However, in order to also ensure a feasible speed of estimation,17 I chose a

relatively modest 20,000 post burn-in draws.18

6.2 Power of MS and MS-TVP Tests

In my estimation, I seek to investigate both the absolute and relative power of the Hall

et al. (1999) test and the MS-TVP test. The exact priors used can be found in the appendix.

Below, I present the results from the model assessment, first comparing the Hall et al. (1999)

model restricted to have an explosive root with a nonexplosive model with no switching, and

then comparing the MS-TVP test with an explosive root to a nonexplosive model with no

switching. As described in the previous section, I calibrate these tests to have size of .05,

i.e. 5% of the time it will incorrectly prefer the model with switching when the true model

is the stationary linear process. My results are presented in table 3.

The first conclusion that I draw from these results is that compared to the results in Hall

et al. (1999), the Bayesian implementation of the test which jointly tests for both switching

16While this fixes the issue in most cases, the issue remains in samples that have a very high variance
(about 5% of all price series). When the issue remains, I count that particular series as “no bubble” series.

17For each time series, estimation entails the estimation of both competing models, as well as approximating
the likelihoods of each model. This takes about 30 minutes in Matlab on a 2013 Macbook Pro with a 2.7
Ghz. Intel i7 processor.

18Experimenting on a few randomly selected time series, my results were not very sensitive the increasing
the number of post burn-in draws.
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Table 3: Power of Bayesian MS Test with 5% Size

Calibrated Odds Ratio Percent Containing Bubble

Bayesian Hall et al. (1999) 45.40 78.61%
MS-TVP 2.16 79.60%

and an explosive root displays higher power to detect a the presence of a bubble. Hall et al.

(1999) are only able to detect a bubble in approximately 60% of the price series. The second

conclusion is that for this particular specification, the more general MS-TVP model does not

add much power to the detect a bubble.

The first result, that the Bayesian implementation has more power than the classical

estimation in Hall et al. (1999), may be partially driven by the fact that I am jointly testing

for both switching and an explosive root, while Hall et al. (1999) test only for an explosive

root. A model with an explosive root and switching may represent the price process better

than a linear model, even if a switching model with a nonexplosive root might provide a

fit of the price series data that is superior to both of these. This intuition is supported

by my initial attempt at implementing Bayesian testing in the Hall et al. (1999) model,

which found that a version of the test that tested only for an explosive root only detected

a bubble about 40% of the time.19 However, since the underlying dividend series does not

have switching, I believe that testing only for an explosive root would be incorrect, and that

the test presented in this paper fully exploits the specification of the periodically collapsing

bubble process found in Evans (1991).

The second result, that the MS-TVP model does not seem to provide superior bubble

detection in this model, is actually quite intuitive. Since the growth rates of all of the bubbles

in this model are identical conditional on the realized values of the shocks, the standard Hall

et al. (1999) test should be expected to perform relatively well compared to the more general

model. Under an alternate time-varying specification of the bubble growth rate, or even in

19However, these estimations were conducted with slightly different priors. To the extent that the results
are sensitive to the priors, this would fail to be an apples-to-apples comparison.
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an application to real world price series that may contain several bubbles, my priors are that

the MS-TVP model would perform better relative to the Hall et al. (1999) test.

Finally, for purposes of intuition, I believe it is helpful to see what one of my generated

and estimated price series actually looks like. Following Evans (1991), I chose the price

series with median variance. The first image in Figure 3 plots the actual asset return and

the estimated asset return for all periods. The second image plots the probability of being in

the low return regime for all periods. The fact that this probability is virtually zero except

for four brief periods suggests that this price series is in a bubble in almost all time periods.

For this price series, model comparison suggests that this price series contains a bubble.

In Figure 4, I present the same graphs, estimated instead in the MS-TVP model. In

addition, I present the time path of the explosive root, φ0,t, which shows that following the

first large bubble collapse, the next bubble contains a more explosive root. Following the

collapse of the second bubble, the explosive root is smaller.

Figure 3: Median Bubble (Standard MS Model)
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Figure 4: Median Bubble (MS-TVP Model)
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7 Conclusion

I have introduced Bayesian estimation of Hall et al.’s (1999) Markov switching test for

asset bubbles, and introduced a new Markov switching time-varying parameter (MS-TVP)

model for testing for asset bubbles. This model combines features of Hall et al.’s (1999)

test, and the MS-TVP model developed in Eo and Kim (2012). This test, which generalizes

the test found in Hall et al. (1999), provides roughly the same power to detect bubbles

of the form introduced in Evans (1991). However, the test may perform better in other

environments, specifically in a model where the growth rates of bubbles structurally vary

over time, as opposed to differing only based on a particular realization of exogenous shocks.

This alternate specification may also better approximate reality, as there is no ex ante reason
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to believe that all bubbles should grow at nearly identical rates.

In future research, I first like to extend my model to a real world application, such

as testing the entire past history of the S&P 500 for periods of bubbles. I would also

like to compare the same models above on a different measure - nowcasting performance.

Nowcasting can be thought of as forecasting the present state of the world for some object of

interest that may only be observable with a lag. In this case, forecasting whether a particular

asset is in a bubble today. Although the tests above have power to detect a bubble given a

full sample of 100 periods of data, it may be the case that these bubble tests can only detect

a bubble after it has collapsed. However, nowcasting of bubbles is of particular interest to

policymakers, as the debate in 2005 surrounding the existence of the housing bubble in the

Federal Reserve Board of Governors (2005) transcripts indicate.
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8 Appendix

8.1 Bayesian Estimation of Hall et al.’s (1999) MS Model

Table 4: Priors for Bayesian MS Model

Parameter Distribution Mean SD

µ0 Normal 1.5 100
µ1 Normal 1.5 100
φ0 Normal 0.0 0.05
φ1 Normal 0.0 0.05
ψj Normal 0.0 0.50

h Gamma 2.0
√

8
p00 Beta 0.5 0.289
p11 Beta 0.5 0.289

8.2 Price Series Generation

I use the exact same procedure as Evans (1991) and Hall et al. (1999).

Equations:

Pt = (1 + r)−1Et(Pt+1 + dt+1)

Ft =
∞∑
j=1

(1 + r)−jEtdt+j

Bt = (1 + r)( − 1)EtBt+1

Pt = Ft +Bt

Where Pt is the stock price at time t, dt is the value of the dividend at time t, Ft is the

fundamental value at time t, Bt is the value of the bubble at time t, and r is the net interest

rate.
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The dividend follows a random walk with drift:

dt = µ+ dt−1 + εt

εt ∼ N(0, σ2)

The bubble component, Bt follows the following path:

Bt+1 =

 (1 + r)Btut+1 if Bt ≤ α[
δ + 1+r

π

(
Bt − δ

1+r

)
ξt+1

]
ut+1 Bt > α

Where δ and α are scalars that satisfy 0 < δ < (1 + r)α.

ut = exp(zt −
σ2
z

2
)

zt ∼ N(0, σ2
z)

ut is a sequence of i.i.d. random variables with Etut+1 = 1, and ξt is an exogenous i.i.d.

Bernoulli process such that:

Pr(ξt = 0) = 1− π

Pr(ξt = 1) = π

i.e. the bubble process follows a linear switching process. Note that if ξ = 0, then the bubble

collapses to δut+1. Therefore, 1− π is the probability of the bubble collapsing each period.

The bubble will continue to grow at the slower rate until it exceeds the exogenously given

scalar α.
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I use the following parameters:

Table 5: Parameters

Parameter Value

α 1
δ 0.5
σ2
z 0.0025
σ2
ε 0.1574
µ 0.0373
r 0.05
d0 1.3
B0 0.5
π 0.85
n 100

Finally, in order to make the variance of the bubble contribute 75% of the variance of

the price series, I scale the size of the bubble by κBt each period, where κ = 20.
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