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1 Introduction

There are a host of economic and political developments that could be expected to alter

the reduced-form dynamics of macroeconomic time series, and a large literature is devoted

to evaluating the evidence for such changes. In this paper we are interested in a substan-

tial subset of this literature that investigates the evidence for discrete structural breaks in

the intercept, slope and residual variance parameters of autoregressive (AR) models fit to

macroeconomic time series. Examples of the application of the AR model with structural

changes include studies of U.S. trend productivity growth (Hansen 2001), the dynamics of

international unemployment rates (Papell, Murray and Ghiblawi 2000, Summers 2004), the

dynamics of real interest rates and inflation (Perron 1990, Wang and Zivot 2000, Rapach

and Wohar 2005, Clark 2006, Eo 2016), and the volatility of macroeconomic and financial

time series (Inclán 1993, Stock and Watson 2002, Sensier and van Dijk 2004).

The potential for structural parameter changes in AR models introduces significant di-

mensions of model uncertainty regarding their number (how many changes?) and type (which

parameters change?) This uncertainty is in addition to the standard uncertainty regarding

the number of AR lags to include in the model. If the researcher does not have a priori

knowledge of the number and type of structural changes, a common situation in practice,

working with structural change models can quickly become a showcase in model uncertainty.

In particular, for even small numbers of structural changes and short lag lengths, the space

of potential models to consider becomes enormous.

In the face of this model uncertainty, the existing literature has primarily made a priori

choices that eliminate portions of the model space, and then used data-based model selection

procedures along the remaining dimensions of model specification. For example, a substantial

literature has devoted attention to the model selection question of the number of structural

changes, while generally conditioning on other elements of model specification, such as the

number of AR lags or the type of structural changes.1 From the classical framework, Bai and

1In some cases, model specification proceeds sequentially. For example, the number of AR lags might be
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Perron (1998) and Bai (1999) develop sequential testing procedures designed to reveal the

number of, perhaps multiple, structural changes. Using a Bayesian framework, Inclán (1993),

Chib (1998) and Wang and Zivot (2000) use posterior odds ratios to compare AR models with

different numbers of in-sample breaks, and Pesaran, Pettenuzzo and Timmermann (2006)

additionally use hierarchical methods to allow for a random number of out-of-sample breaks

when forecasting. Finally, a number of papers have developed flexible Bayesian models

that do not fix the number of in-sample breaks for a particular model, but instead treat it

as random in estimation. Examples include Koop and Potter (2007), Giordani and Kohn

(2008), Geweke and Jiang (2011) and Maheu and Song (2014).

Far less attention has been given to dimensions of model uncertainty beyond the number

of structural changes. Inoue and Rossi (2008) present procedures based on sequential hy-

pothesis tests designed to provide evidence on the type of structural change. Their approach

provides a subset of parameters that contain the stable parameters with a pre-specified prob-

ability. Hultblad and Karlsson (2008), Levin and Piger (2008), Chen and Zivot (2010) and

Eo (2016) use Bayesian posterior model probabilities to compare alternative AR models on

dimensions beyond the number of structural changes. In each case, the authors restrict the

model space such that it is feasible to consider all possible models. In particular, Hultblad

and Karlsson do not consider uncertainty regarding the type of structural change, Chen and

Zivot do not allow AR parameters to change, Eo chooses the AR lag length sequentially

prior to considering structural breaks, and both Levin and Piger and Eo do not allow some

AR parameters to break with others remaining constant.

Meanwhile, the focus of nearly all of the existing literature has been on selection of a par-

ticular AR model with structural changes, upon which inferences are then based. However,

this practice ignores uncertainty regarding the model itself, which can have dramatic conse-

quences on inferences about quantities of interest (e.g. Leamer 1978, Hodges 1987, Moulton

chosen based on a model without structural breaks, and then the number of structural breaks established
conditional on this chosen number of lags. This effectively eliminates a portion of the model space that
would have been considered through a joint consideration of model uncertainty.
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1991, Draper 1995, Kass and Raftery 1995, Raftery 1996, Fernández, Ley and Steel 2001a).

From a Bayesian perspective, incorporating model uncertainty is conceptually straightfor-

ward. In particular, an additional, discrete, parameter is defined that lies in the model space,

and the posterior mass function for this parameter then provides posterior probabilities that

each model is the true model. Posterior distributions for objects of interest are then aver-

aged across alternative models, using these posterior model probabilities as weights. This

procedure, known as Bayesian Model Averaging (BMA), allows for model uncertainty to be

incorporated into inference regarding objects of interest.2 Unfortunately, the direct averag-

ing of all possible models will not be feasible when the model space becomes too large, as is

the case for all but the simplest AR models with structural parameter changes.

In this paper, we develop a feasible approach to conduct BMA for AR models with struc-

tural changes, where the model space encompasses lag selection, the number of structural

changes, and the type of each structural change. Specifically, we design a MCMC sampler to

obtain draws from the model space, which are in turn used to estimate posterior model prob-

abilities. We investigate the performance of our proposed BMA procedure for characterizing

structural breaks via a Monte Carlo simulation study. We simulate a variety of autoregres-

sive data generating processes, with alternative types and numbers of structural breaks, that

are meant to mimic key features of U.S. macroeconomic time series. Our BMA procedure

performs very well in these simulations, identifying both the type and number of parameter

changes accurately, as well as the lag order of the autoregressive process. The procedure is

not overly prone to false positives, only infrequently identifying structural breaks when the

true data generating process does not contain any.3

Our objective is closely related to that in Groen, Paap and Ravazzolo (2013), who propose

2For an introduction to BMA and a review of related literature, see Hoeting et al. (1999) and Steel (2017)
3An assumption of BMA is that the true model is in the set of models under consideration. A consequence of
this assumption is that asymptotically all posterior probability will be placed on a single model, which may
not be desirable when combining predictive distributions if all models are in fact misspecified. See Diebold
(1991) and Geweke and Amisano (2011) for additional discussion. While we acknowledge this potential
drawback of BMA, we also emphasize that to date very little effort has been spent on characterizing model
uncertainty in structural break models. Given its long history and prominence as a model combination
strategy, BMA is a natural step in this direction.
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a feasible BMA procedure to investigate variable inclusion and the number and type of

structural breaks in Phillips Curve specifications for U.S. inflation. The primary difference

from our approach is that Groen, Paap and Ravazzolo impose hierarchical priors on the size

of parameter breaks and the break dates, whereas we leave these as unrestricted parameters

to be estimated. While the additional structure imposed by the hierarchical priors can be

useful for forecasting, which is the goal of Groen, Paap and Ravazzolo, we prefer to pursue an

unrestricted estimation for retrospective analysis. Our design will necessitate an alternative

scheme to sample the model space from that used in Groen, Paap and Ravazzolo, who are able

to use the efficient sampling algorithm of Gerlach, Carter and Kohn (2000) to sample their

specification of the structural break process. We will instead proceed by directly sampling

the model space using an extension of the Markov Chain Monte Carlo Model Composition

(MC3) procedure of Madigan and York (1995).

We use the proposed feasible BMA procedure to investigate structural breaks in AR

models for a cross-section of U.S. macroeconomic time series measuring wage and price

inflation, production growth, and labor market conditions, measured from 1959 through the

present. Our results produce several conclusions. First, there is overwhelming evidence of

structural breaks for all U.S. macroeconomic series that we consider, and for most series

there are multiple structural breaks detected. For all series, there appear to be at least one,

and usually multiple structural changes in conditional variance. We find substantial evidence

for breaks in the autoregressive parameters of price inflation series. For most series we find

mixed evidence for breaks in the intercept parameter, with posterior probability spread out

across models with no break in intercept and models with a single break in intercept. Finally,

the evidence suggests that short order AR models are preferred by the data, with only one

to two lags included with meaningful probability.

For most series, there is substantial model uncertainty in at least one dimension, whether

it be the exact number of structural breaks, the type of structural breaks, or the AR lag order.

This provides empirical support for the importance of accounting for model uncertainty in
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autoregressive models with structural breaks, and calls into question the common practice

of basing inference on a single selected structural break model. We use our BMA procedure

to produce model-averaged inference regarding a number of macroeconomic phenomena,

including changes in trend growth rates of production series, changes in the natural rate

of unemployment, changes in the level and persistence of inflation, and the continuation of

the macroeconomic “Great Moderation”. We find evidence for substantive reductions in the

trend growth rate of production series, such as real GDP, that occur primarily during the

2000s. However, we find little evidence for changes in the natural rate of unemployment over

the entire sample period. We find strong evidence for changes over time in the persistence

of core inflation series, with this persistence rising during the 1960s and falling around 1990.

Finally, our results suggest that the Great Moderation is alive and well, notwithstanding a

burst in volatility associated with the Great Recession.

The remainder of the paper is organized as follows. Section 2 defines the class of AR

models with structural changes that will be considered, and establishes aspects of model

uncertainty. Section 3 discusses BMA in the context of the structural change model, and

lays out our proposed feasible BMA procedure. Section 4 evaluates the performance of this

BMA procedure using a Monte Carlo simulation experiment. Finally, Section 5 investigates

the evidence for structural changes in the parameters of AR models for U.S. macroeconomic

times series. Section 6 concludes.

2 Model Specification

This section defines the autoregressive model with multiple structural breaks in inter-

cept, autoregressive parameters and conditional variance, and discusses the various choices

required to fully specify the model. To begin, consider the Gaussian autoregressive model
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with constant parameters:

yt = α +

p∑
i=1

φiyt−i + εt, t = 1, . . . , T

εt ∼ i.i.d. N
(
0, h−1

)
,

(1)

where h is the precision parameter, defined as the inverse of the conditional variance. We as-

sume throughout that we have an appropriate number of initial observations, y0, y−1, . . . , yp−1,

upon which to condition inference.

The autoregressive model with structural breaks augments (1) to allow for m episodes

of parameter change that occur at the ordered dates τ = {τ1, τ2, ..., τm}, with τi a positive

integer. We wish to write this model such that it allows for specification choice regarding

which parameters change at each breakdate. Define an m element row vector of indicator

variables based on these dates as It = [I(t ≥ τ1) I(t ≥ τ2) . . . I(t ≥ τm)]. We then write

the autoregressive model with breaks as follows:

yt = αt +

p∑
i=1

φi,tyt−i + εt, t = 1, 2, . . . , T

εt ∼ i.i.d. N
(
0, h−1

t

)
αt = α + Iαt α̃

ht = h+ Iht h̃

φi,t = φi + Iφit φ̃i, i = 1, . . . , p.

(2)

Here, Iαt is a row vector holding the subset of the indicator variables in It that are relevant

for measuring changes in the intercept parameter. If αt changes at each break date, then

Iαt = It, while if αt experiences no structural breaks then Iαt is the empty set. The vector

α̃ holds the vector of changes in the intercept for each date where the intercept changes.

{Iht , h̃} and {Iφit , φ̃i}, i = 1, . . . , p, are defined similarly to capture structural breaks in the
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precision parameter and each autoregressive parameter respectively.4

As is common in the recent literature on structural change models, the break dates are

assumed unknown and treated as additional objects to be estimated. We restrict the break

dates so that the model parameters are constant for a minimum of b time periods between

breaks, as well as at the beginning and end of the sample:

τ1 > b,

(τi − τi−1) ≥ b, i = 2, ...,m,

(T + 1− τm) ≥ b

(3)

When estimating this model, we treat b as a prior parameter set by the econometrician.

The autoregressive model with multiple structural changes of unknown type necessitates

several dimensions of model specification. First, as with (1), the number of lagged variables

in the model must be chosen, which we denote as a choice of the lag order, p. Second, the

number of structural changes, m, must be set. Third, we must specify which of the intercept,

autoregressive parameters, and precision parameter are allowed to change at each of the m

break dates. This is determined by choices of Iαt , Iht , and Iφit , i = 1, . . . , p. We compactly

denote this choice as R =
{
Iαt , I

h
t , I

φ1
t , . . . , I

φp
t

}T
t=1

.

A particular model specification, denoted M , is then determined by a choice of {p,m,R},

and the number of potential models is determined by the number of unique combinations

of {p,m,R} considered. Here we consider values of p that take on any integer value from 0

to a maximum of p∗, and values of m that take on any integer value from 0 to a maximum

of m∗. We allow R to be any possible choice of
{
Iαt , I

h
t , I

φ1
t , . . . , I

φp
t

}
that is consistent

with m structural breaks. In other words, we allow each of Iαt , Iht , Iφ1t , . . . , I
φp
t to be any

subset of It, provided that R is consistent with at least one parameter change at each of

the m break dates. The number of potential specifications of the autoregressive model with

4We have chosen to write the AR model with structural breaks in an intercept form rather than a deviation
from mean form. This implies that a change in the autoregressive parameters, holding other parameters
constant, will generate a change in the unconditional mean of the process.
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multiple structural changes is then:

N =
m∗∑
m=0

(
p∗∑
p=0

(
2p+2 − 1

)m)

Finally, it will be useful to define (2) in a matrix form. Let Y = (y1, y2, . . . , yT )′ be the

T ×1 vector of observations on yt, and e = (ε1, ε2, . . . , εT )′ be the T ×1 vector of disturbance

terms. Let Z be a T ×J matrix holding the relevant, non-constant, right-hand side variables

for a particular structural break model. In other words, Z is a matrix such that (2) can be

written in matrix form as:

Y = [ιT Z] β + e,

where β is a vector holding the conditional mean parameters:

β =
[
α, α̃′, φ1, φ̃1

′
, . . . , φp, φ̃p

′]′

3 A Feasible Approach to Bayesian Model Averaging

3.1 Bayesian Model Averaging for the Multiple Break Model

The large number of specification choices required for the autoregressive model with

multiple structural breaks is likely to lead to substantial model uncertainty. The typical

practice in the literature is to make some model selection choices a priori, and use data-

based procedures to determine the remaining elements of model specification. For example,

consider the question of which parameters are allowed to change at each structural break

date. A common a priori choice is a model in which a subset of parameters are allowed to

change at every break date, while other parameters are never allowed to change.5 Given

this choice, other, possibly data based, procedures may be used to select the number of

structural breaks and the autoregressive lag order in order to arrive at a specific model.

5This is referred to as a partial structural change model in the literature. See, e.g., Wang and Zivot (2000).
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These data based procedures are often applied sequentially. For example, the autoregressive

lag order might be chosen based on a model without structural breaks, and then the number

of structural changes selected conditional on this chosen lag order. In the end, a particular

model is selected upon which to base inference.

Focusing on a particular model, selected either through data based or a priori means,

ignores information in models other than the selected model, and thus does not yield infer-

ences that fully incorporate model uncertainty. Instead of basing inference on a single model,

we will instead average inference about objects of interest across alternative models, where

averaging is with respect to the Bayesian posterior probability that each model is the true

model. Label the jth model specification as Mj, where j = 1, . . . , N . The Bayesian posterior

model probability is then:

Pr(Mj|Y ) =
f (Y |Mj) Pr (Mj)

N∑
n=1

f (Y |Mn) Pr (Mn)

, (4)

In (4), Pr(Mj) is the prior probability that Mj is the true model and f(Y |Mj) is the marginal

likelihood for model Mj:

f(Y |Mj) =
∑
τ ∈Π

∫
θ

f(Y |θ, τ,Mj)p(θ, τ |Mj)dθ

 , (5)

where θ = {β, h, h̃} collects the intercept, autoregressive, and precision parameters for model

Mj, f(Y |θ, τ,Mj) is the likelihood function for Mj and p(θ, τ |Mj) is the prior distribution

over the parameters of Mj. Finally, Π indicates the set of possible locations for the m break

dates.

This approach to incorporating model uncertainty is called Bayesian Model Averaging

(BMA). As an example of BMA in the context of a structural change model, consider the
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posterior probability that the true model contains m structural changes:

Pr(m|Y ) =
N∑
n=1

Pr (m|Y,Mn) Pr(Mn|Y ),

where Pr(m|Y,Mn) = Pr(m|Mn) is 1 if model Mn contains m structural breaks and is 0

otherwise. As another example, consider the intercept parameter at time t, αt. The BMA

posterior density for αt is:

p(αt|Y ) =
N∑
n=1

p (αt|Y,Mn) Pr (Mn|Y )

where p (αt|Y,Mn) is the posterior density for the intercept conditional on model Mn being

the true model.

While BMA for the autoregressive model with multiple structural changes is conceptu-

ally straightforward, the potentially enormous model space makes direct calculation of each

Pr (Mj|Y ) based on (4) practically infeasible for all but the simplest cases. For example,

consider an empirically relevant case where the maximum lag order allowed is (p∗ = 6)

and the maximum number of structural breaks allowed is m∗ = 5. In this case there are

N > 1 trillion alternative models to consider. For our study of structural breaks in U.S.

macroeconomic time series, the model space will be even larger.

When faced with an infeasibly large sample space, a popular approach is to sample the

model space using a posterior simulator designed to obtain draws from the multinomial prob-

ability distribution given by the posterior model probabilities. A commonly-used example

of this approach is the Markov Chain Monte Carlo Model Composition (MC3) algorithm

of Madigan and York (1995), which uses a posterior simulator based on the Metropolis-

Hastings algorithm. MC3 was implemented by Raftery, Madigan and Hoeting (1997) for

Bayesian Model Averaging in linear regression models, and has been used in a number of

economic applications involving linear regression (e.g. Fernández, Ley and Steel 2001b). One

could apply an MC3 algorithm in the current context to sample directly from the N -element
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model space. However, in order to calculate the Metropolis-Hastings acceptance probability,

this algorithm would require computation of the marginal likelihood in (5), which is very

computationally expensive.6

To sidestep this computational difficulty, we instead design a Metropolis-Hastings sam-

pler to obtain draws from a joint posterior distribution that includes the model space and

the timing of structural changes. In other words, we obtain samples from the distribu-

tion Pr (M, τ |Y ). By extending the target posterior distribution to include the timing of

structural change, the Metropolis-Hastings acceptance probability will no longer require cal-

culation of the marginal likelihood given by (5), but instead will be based on the marginal

likelihood for an autoregression with structural breaks of known timing, f (Y |M, τ), which

is computed relatively quickly. Further details of the posterior sampler are presented in the

Appendix.

The posterior sampler produces draws from Pr (M, τ |Y ), which we denote as M{g} and

τ {g} for the gth draw. Given G such draws, one can then form an estimate of Pr(Mj|Y ) by

simply counting the relative frequency that Mj is visited by the sampler. Specifically, an

estimate of Pr(Mj|Y ) is given by:

1

G

G∑
g=1

I
(
M{g} = Mj

)
, (6)

where I
(
M{g} = Mj

)
is an indicator function that equals one if M{g} = Mj and is zero

otherwise. Note that this approach gives zero posterior probability to any model that is not

visited by the sampler. This fact suggests an alternative estimate of Pr(Mj|Y ) based on

equation 4, where the summation over models is restricted to only those models that are

6The number of summations required to cover all possible values of τ in (5) can be enormous. For example,
for a small number of breaks (m = 2), a sample size similar to our empirical applications (T = 230), and
assuming b = 10, there are over 20,000 possible locations for the break dates.
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drawn by the sampler:

Pr(Mj|Y ) =
f (Y |Mj) Pr (Mj)∑

n∈S

f (Y |Mn) Pr (Mn)
, j ∈ S (7)

If the models never visited by the sampler are assumed to have zero probability, model

probabilities based on 7 will be exact, while those based on 6 will contain estimation error.

Gvien this, all results we present are based on model probabilities constructed from 7.

3.2 Prior Specification

The BMA approach requires the specification of a prior distribution for the parameters

of each model as well as a prior distribution across alternative models. As there are a large

number of models, we do not attempt to elicit priors for each individual model, but instead

use a strategy that generates priors automatically. This is a common practical approach

to set priors in the BMA literature (e.g. Fernández, Ley and Steele 2001b and Blonigen

and Piger 2014). We begin with the joint prior density for the parameters of each model,

p(θ, τ |M), which we factor as follows:

p(θ, τ |M) = Pr(τ |θ,M)p(θ|M)

For Pr(τ |θ,M), we place equal prior probability on all possible locations of the m break

dates. This follows the literature investigating Bayesian multiple break models (e.g. Inclán

1993, Stephens 1994, Wang and Zivot 2000). Recall that Π indicates the set of possible

locations for the m break dates, and label the total number of such locations as C. The

probability distribution function is then uniform:

Pr(τ |θ,M) =
1

C
, τ ∈ Π, (8)
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where:

C =
((T − 2b+ 1)− (m− 1) (b− 1))!

m! ((T − 2b+ 1)− (m− 1) (b− 1)−m)!

Note that C depends on the minimum regime length parameter b, which we treat as a prior

hyperparameter set by the econometrician. For the quarterly data used in our application

we set b = 8, so that one structural break can happen every two years.

The remaining prior distribution can be further factored:

p(θ|M) = p(β, h|h̃,M)p(h̃|M)

For p(h̃|M) we use independent and identical Gamma(ã, ṽ) distributions for each element of

h̃. For the remaining parameters we use a Normal-Gamma prior that is independent of h̃:

[β, h]′ |h̃,M ∼ NG
(
µ, h−1V, a, v

)
,

This is the natural conjugate prior for the case where there are no structural changes in the

precision parameter, and its use will simply marginal likelihood calculations considerably for

this special case.

It is well known that posterior model probabilities are sensitive to the amount of prior

information incorporated for parameters in alternative models. In particular, if a prior distri-

bution is very diffuse for a particular parameter, models that do not include this parameter

will tend to be preferred over those that do include this parameter. Here we follow a strategy

consistent with Fernández, Ley and Steele (2001a), which involves using very diffuse priors

for parameters that are in all models, and more informative priors for parameters that are

in some models, but not others.

The specifics are as follows. First, we set the prior mean for β equal to a vector of zeros

(µ = 0J). The prior variance for conditional mean parameters is set as follows:
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V =

 c 0′J−1

0J−1 V ∗

 .
The scalar c captures the prior variance on the intercept parameter, α, which is assumed

to be in all models considered. As such, we set c = 108, which approximates the standard

non-informative prior for α. The matrix V ∗ captures the prior variance-covariance matrix

of the remaining conditional mean parameters, which are not in each possible model. To set

V ∗ we use:

V ∗ = d2I,

which simplifies the specification of V ∗ to the choice of a single value, d. We discuss the

specific choice of a value for d in the results presented in later sections.

The first-regime precision parameter, h, is in all models considered, and as such we

specify a prior distribution that approximates the standard non-informative prior for the

model precision, setting a = 1 and v = 10−10. This yields a Gamma density with mean of

1 and variance 2 x 1010. For the remaining precision parameters, we set ã = 1 and ṽ = 0.1,

which yields a Gamma density with mean of 1 and variance of 20.

Finally, we describe our strategy to provide automatic prior distributions for alterna-

tive models, Pr (M) = Pr (p,m,R). Define the “model size” as the number of intercept,

autoregressive, and precision parameters in the model. In the notation used above this is

the number of elements in the set of parameters θ. We set Pr (M) indirectly by setting a

flat prior over model size. That is, the set of all feasible choices of p,m,R that produce

models with q conditional mean, autoregressive and precision parameters would have the

same total probability as the set of all feasible choices of p,m,R that produce models with

r such parameters.7 Then, within a set of feasible models that have the same model size, we

7“Feasible” in this context refers to internal consistency of the elements that make up the model. For
example, an AR(0) model with a structural breaks in an AR(1) parameter is an internally inconsistent
model, and would receive zero weight in our prior over models.
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place equal prior probability on each model. Formally, let q equal the model size implied by

a particular feasible choice of p,m,R, where q = 2, 3, . . . , Q, and let Fq equal the number of

unique feasible choices of p,m,R that yield model size equal to q.8 Then:

Pr(M) = Pr(p,m,R) =
1

Fq (Q− 1)
(9)

Both Fq and Q depend on the maximum lag length allowed, p?, and the maximum number

of structural breaks allowed, m?. We treat each of these values as a prior hyperparameter set

by the econometrician. For the quarterly data used in our study we set p? = 6 and m? = 10.

For all the data series we study, the data prefers values of p and m that are well below these

maximum values.

4 Monte Carlo Simulation

To assess the performance of the BMA procedure described above, we perform a Monte

Carlo exercise where we apply the procedure to simulated datasets that mimic relevant

features of U.S. post-war macroeconomic time series. We consider five data generating

processes (DGPs), detailed in Table 1.

The first DGP, labeled “No Break”, is an AR(1) process with no structural breaks in any

parameters. This DGP allows us to evaluate the frequency with which our our procedure

falsely detects structural change. In the “No Break” DGP we set the AR(1) parameter to 0.9,

thus generating a highly persistent process. This is motivated by an existing literature, e.g.

Diebold and Chen (1996) and Prodan (2008), showing that frequentist tests for structural

breaks can have severe size distortions when faced with persistent autoregressive processes.

The second and third DGPs, labeled “Intercept Large” and “Intercept Small” respec-

tively, are each AR(1) processes with two breaks occurring in the intercept of the process

8As all models contain α and h, the minimum value of q = 2.
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only. In the “Intercept Large” case, these breaks are of a size 1.4 times the standard devi-

ation of the model disturbance term, while in the “Intercept Small” case these breaks are

of a size 0.7 times the standard deviation of the model disturbance terms. These types of

processes are often used to investigate changes in the unconditional mean of series such as

the growth rate of U.S. Real Gross Domestic Product or the U.S. unemployment rate.

The fourth DGP, labeled “Persistence” is an AR(2) process with two shifts in the per-

sistence of the process, such that both the unconditional mean and variance of the process

starts low, moves higher, and then returns to a lower level. Such a process has been suggested

for post-war U.S. inflation series, and we calibrate the process to generate series that roughly

match the variation in the level and volatility of these series over the post-war period. The

final DGP, labeled “Intercept / Variance”, is an AR(2) process with two shifts in both the

intercept and conditional variance, calibrated such that the unconditional mean and variance

of the process starts low, moves higher, and then returns to a lower level. Such a process

generates a similar pattern as the “Persistence” DGP, and allows us to evaluate the ability

of the sampler to detect the true DGP from models with competing features.

For each DGP the sample size is set equal to that used in our quarterly study of U.S.

macroeconomic time series, T = 226, and the break dates are placed roughly equidistant

throughout the sample. All Monte Carlo simulation results are based on applications of

the BMA procedure to 100 simulated time series from each DGP. In implementing the

Metropolis-Hastings sampler, we use 125,000 samples as our pre-convergence period, and base

results on a subsequent 250,000 samples. All prior hyperparameters were set as discussed in

Section 3.2, where we set the value of d to 4.0. We have also evaluated the sensitivity of our

Monte Carlo results to values of d that are one-half and twice this baseline value, and found

nearly identical results.

In summarizing the Monte Carlo evidence, we analyze three categories of performance for

the BMA procedure: (1) accuracy of inclusion for each autoregressive lag, (2) identification

of the number and type of breaks, and (3) estimation of parameter values. We find that our
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procedure performs well on each criterion under all five DGPs.

Regardless of the true DGP, the Bayesian procedure detected the presence of the appro-

priate number of autoregressive lags very accurately. Table 2 shows the Bayesian posterior

inclusion probability (PIP), defined as the posterior probability that a particular autoregres-

sive lag belongs in the true model, for all autoregressive lags up to p? = 6. In all cases,

the BMA procedure places greater than 80% posterior probability on the true number of

autoregressive lags, and in the majority of cases this posterior probability is above 90%.

For autoregressive lags that were not included in the true DGP, the estimated inclusion

probabilities were typically very close to 0%.

We next turn to accuracy of break detection. Table 3 shows the posterior probability of

alternative numbers of structural breaks. In all cases, the BMA procedure places substantial

posterior probability on the correct number of structural breaks. For four of the five DGPs,

the posterior probability for the correct number of structural breaks is near to or above 80%,

and in three cases is close to 90%. For the “Intercept Small” case the posterior probability

for the correct number of breaks (2) is 44%, while the posterior probability for a single

break is 52%. Given the relatively small size of the structural break for this DGP, the BMA

procedure’s ability to detect at least one break in the process at a high rate is encouraging.

This case also demonstrates the benefits of a BMA approach, which would give substantial

weight to both one and two break models, vs. selecting only one highest probability model,

which would focus only on the incorrect one break model. Finally, the BMA procedure does

not frequently identify structural breaks that are not present. For example, for the “No

Break” DGP, the procedure identifies false breaks only 9% of the time.

We are interested not only in accurate identification of the number of breaks, but also

in accurate identification of the types of structural breaks. Table 4 shows the mean number

of structural breaks included for each potential model parameter in each DGP. The BMA

procedure is extremely accurate at detecting which parameters change at each break date.

In all cases, the parameters that actually break in each DGP are the ones that are identified
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as changing, while very few breaks are identified for parameters that do not actually undergo

structural changes.

We also evaluate how well the Bayesian procedure performed at estimating the true

parameter values at each point in time. In particular, for each Monte Carlo simulation, we

compute the RMSE for each parameter, defined as follows:

RMSE =

√√√√ T∑
t=1

1

T
(E (γt|Y )− γt)2

where γt is the true value of a specific parameter at time t and E (γt|Y ) is the Bayesian

posterior mean of this parameter at time t. We then average the RMSE values across the

100 Monte Carlo simulations, and present the mean RMSE value in Table 5. We can see

that the parameter values were estimated very accurately by our sampler, with the largest

mean RMSE being 0.25, and most far smaller. The mean RMSE for variables that were not

included in the full model were particularly small, since our sampler was able to identify

that these variables did not belong in the model with a high degree of accuracy, and were

therefore able to perfectly set the coefficient value equal to zero in most simulations.

It is worth noting that each of the five DGPs we consider is correctly specified under

the assumptions of our BMA procedure, in that the true process is an AR model with or

without parameter breaks. We have also considered the performance of the BMA procedure

for several misspecified processes, including an ARMA process, a Markov-switching AR

process, and an AR process with stochastic volatility. Our BMA procedure that assumes

an underlying AR model performs well when applied to these misspecified models in that

it accurately identifies the true number of structural breaks and in the correct parameters.

More details on these simulations can be found in an online appendix, available at the

authors’ websites.9

9The results for the Markov-switching DGP deserve further comment. We calibrate the Markov-switching
AR process to generate recurrent regime switching in intercept at business cycle frequencies (recession
and expansion) as in Hamilton (1989). In the Monte Carlo simulations, our procedure places an average
posterior probability of 99% on the AR model with no structural breaks. This is perhaps not surprising, as
the AR(1) model with Markov-switching in intercept can be recast as a constant parameter AR(1) model
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5 Empirical Results

Having demonstrated the efficacy of our feasible BMA procedure in Monte Carlo simu-

lations, we now present evidence from the application of this procedure to study structural

breaks in autoregressive models of U.S. macroeconomic time series. Our sample consists of

a cross section of eight time series, measuring production, employment, wages, and prices.10

We consider growth rates of the underlying variables for all series except the unemployment

rate, which is considered in levels. The data frequency is quarterly, and the sample period

extends from a maximum of the first quarter of 1959 to the second quarter of 2018. For

some series the sample period is smaller due to data availability. Table 6 provides additional

details regarding the series considered.

The feasible BMA procedure proceeds by sampling from the model space using a Metropolis-

Hastings sampler. Our results are based on one million draws from the sampler, following

250,000 pre-convergence draws. We took a number of checks on the performance of the sam-

pler and the sufficiency of the number of pre-convergence draws. First, the acceptance rates

from each block of the Metropolis-Hastings sampler were within reasonable ranges, averaging

between 10% and 30% for the various series under consideration. Second, the one million

post-convergence draws were generated by four separate chains, each of which was allowed

to produce 250,000 pre-convergence draws and 250,000 post-convergence draws. The results

produced by each of these chains were very similar to each other, suggesting the chains had

converged to their stationary distribution. Finally, we produced a number of standard visual

diagnostic checks, such as trace plots and running mean plots. Each of these suggested that

our convergence period was sufficient.

with a non-normal error term (Hamilton, 1989). One might have hoped the BMA procedure would identify
a new structural break in intercept each time the Markov-switching process changes regimes. However,
this would create a highly parameterized model in terms of number of breaks, and the short length of the
recession regime relative to the expansion regime makes this type of model unlikely to be preferred. If
one were to encounter more persistent Markov-switching regimes, the BMA procedure would likely prefer
to identify switches between regimes as structural breaks. Indeed, in the limit, a Markov-switching model
with absorbing states is equivalent to a structural break model (Chib, 1998).

10We focus on core price index series to avoid issues with detecting breaks in the presence of large outliers
in food and energy prices.
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In implementing the BMA procedure, all prior hyperparameters were set as discussed in

Section 3.2. We set the value of d to 4.0 for all AR parameters and to d = 0.4 for parameters

representing changes in intercepts. As our data is measured in quarterly growth rates, a

value of d=0.4 for the intercept change parameters represents a prior standard deviation for

this parameter of 1.6 percentage points in annualized growth rates, a large change, especially

for U.S. production series for which trend growth breaks are generally estimated to be in

the tenths of a percentage point. The value of d for AR parameters also generates a diffuse

prior over reasonable values for these parameters.

5.1 BMA Evidence on Autoregressive Lag Order

We begin by considering the BMA evidence for autoregressive lag inclusion. For each

series, Table 7 gives the PIP for autoregressive lags up to p∗ = 6. These PIPs are not

conditioned on a particular number or type of structural breaks, but instead incorporate

uncertainty about these elements. The PIPs make clear that autoregressive dynamics are a

clear feature for nearly all of these series, with the only exception being the growth rate of

real investment. For all other series, the PIP for the AR(1) parameter is 100%. Inclusion

of higher order AR dynamics is less uniform, although lag orders appear limited to at most

three for all series. It is worth highlighting that while many PIPs are near zero or one, this

is not uniformly the case. For example, there appears to be non-trivial model uncertainty

regarding whether real GDP growth displays AR(2) dynamics. BMA is particularly well

suited to incorporate this model uncertainty in estimation of other model elements.

5.2 BMA Evidence on the Number, Type and Timing of Breaks

We now turn to the evidence for structural breaks in these series. For each series, Table 8

presents BMA posterior model probabilities for models with different numbers of structural

breaks. Scanning the column for zero breaks, it is clear there is overwhelming evidence for

at least one structural break in these time series. For nearly all series the probability of a
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model with no structural breaks is identically zero, meaning that models with zero structural

breaks were never drawn following convergence of the sampler. The only exception is the

unemployment rate, although even here the posterior probability of zero breaks is only 8%.

Given that models with structural breaks are strongly preferred, we next consider the

evidence for the number of structural breaks. From Table 8, we draw a number of conclusions.

First, for all series, there is non-trivial weight placed on models with different numbers

of structural breaks. In other words, there is substantial posterior uncertainty about the

true number of structural breaks. This provides empirical motivation for the use of BMA

methods, and casts doubt on procedures that draw inference by focusing on models with

a specific number of structural breaks. More generally, it calls into question the enterprise

of attempting to select a specific number of structural breaks for U.S. macroeconomic time

series. Second, for nearly all series, the majority of the posterior probability is placed on

there being more than a single structural break. Third, the two series that place substantial

weight on a single structural break are each NIPA production components, namely real GDP

and Consumption. Even in these cases, this probability is far from 100%, being 48% for real

GDP and 60% for real Consumption.

What is the nature of the structural breaks found for U.S. macroeconomic time series?

Table 9 gives posterior probabilities for the number of breaks in each of the intercept pa-

rameter, AR parameters, and conditional variance parameter for each series. For all series,

there is significant uncertainty about the presence of intercept breaks, in that substantial

posterior probability is placed on both the case of zero breaks and a single structural break

in intercept. There is little evidence for more than a single structural break in intercept.

There are a number of series, such as real GDP and Consumption, where the probability of

a break in intercept is spread nearly equally across zero and one structural break, but which

the zero break model receives slightly higher posterior probability. It is worth highlighting

these cases, as they are series for which the non-trivial possibility of a single structural break

in intercept would have been ignored in a study that chose a single “best” model. By con-
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trast, with our BMA approach, models for these series that contain parameter breaks will

be averaged into inference. 11

Finally, for each series, Figure 1 shows plots of the posterior probability that a structural

break in intercept occurs at each quarter in the sample period. It is interesting to note that

for most series there are several historical time periods where posterior probability is placed

on a break in intercept occurring. If we combine this with the evidence in Table 9 that

supported at most one structural break, this suggests that the the procedure is sampling

many models with a single structural break, but the timing of this structural break can vary

substantially across different models. Although there is variation across series, many place

significant probability of a break in the early-mid 1980s. Both the CPI and PCE inflation

series also place probability of a break in the early-mid 1990s, while the real GDP and

Consumption series each place probability of breaks in the early and late 2000s.

Turning to breaks in AR parameters, Table 9 shows that the evidence for such breaks is

limited to the inflation series. For core CPI inflation, substantial weight is placed on models

with one and two structural breaks in AR parameters, while for core PCE inflation nearly

all posterior weight is placed on models with two and three breaks. For wage inflation, the

highest probability is placed on one break in AR parameters, although substantial (48%)

probability is placed on a model with no breaks. Overall, there seems to be strong evidence

for structural breaks in the AR parameters of U.S. price inflation series, and less, though still

substantial, evidence for such breaks in wage inflation. In terms of timing of breaks, Figure

2 shows that for the price inflation series, breaks in AR parameters are dated to two primary

time periods, the mid-1960s and the early to mid 1990s. For wage inflation the breaks are

dated to the early 1980s.

Finally, Table 9 displays very strong and uniform evidence for breaks in conditional vari-

ance, with the probability of a model with no breaks in conditional variance receiving zero

11Note that a break in the intercept parameter does not necessarily imply a change in the unconditional
mean of the series, as the latter will also depend on breaks in AR parameters, the evidence for which we
turn to next. Later, in Section 5.3, we investigate the implications for changes in both the intercept and
AR parameters for changes in the unconditional mean of these series.
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posterior weight for all series except the unemployment rate, for which the no break model

receives 8% posterior probability. The probability of alternative numbers of structural breaks

in conditional variance tends to be spread out among different, non-zero, numbers of breaks,

with the pattern being series specific. It is easiest to summarize this information by con-

sidering the timing of structural breaks, which is shown in Figure 3, and demonstrates that

breaks appear to cluster around three main time periods. First, there are many series for

which a break is dated to the early-mid 1970s. These elevated probabilities are seen in the

nominal series and the labor market variables. Second, most series have an elevated break

probability in the mid 1980s, consistent with the timing of the so-called “Great Moderation”

in U.S. macroeconomic variables. For a small number of variables this elevated probability

instead occurs in the late 1980s or early 1990s. Finally, for a few series, there is an ele-

vated probability of a structural break corresponding to the beginning and end of the Great

Recession.

5.3 BMA Evidence on Breaks in Trend Growth Rates, Inflation

Dynamics, and Macroeconomic Volatility

The above results establish evidence regarding the number, timing and nature of struc-

tural breaks in the parameters of autoregressive models of U.S. macroeconomic time series.

We now use these results to revisit a variety of specific questions from the existing literature.

First, we investigate the evidence for structural breaks in trend growth rates of produc-

tion. Second, we investigate the evidence for changes in the natural rate of unemployment.

Third, we evaluate the possibility for level and persistence shifts in inflation series. Finally,

we present new evidence regarding the nature of the Great Moderation in U.S. economic

activity.

A long and prolific literature has investigated structural breaks in trend U.S. real GDP

growth rates over the post-war period, with a primary focus on evidence for a reduction

24



in trend real GDP growth during the early 1970s.12 Recently, interest in this topic has

experienced a resurgence, with a number of papers investigating the possibility of additional

structural changes in trend real GDP growth in the mid 2000s (prior to the start of the

Great Recession). Recent contributions in this literature include Luo and Startz (2014),

Antolin-Diaz, Drechsel, and Petrella (2017), Grant and Chan (2017), Kamber, Morley and

Wong (2018), and Eo and Morley (2020).

To investigate changes in trend growth rates, we look for breaks in the unconditional

mean of both real GDP and real Consumption growth. Recall, there was little evidence for

breaks in the AR parameters of these series, suggesting that changes in persistence have

not contributed to changes in unconditional mean. However, there was significant evidence

for a single break in intercept for these series, with substantial uncertainty regarding the

timing of this break. Given this, there is similar evidence for breaks in the unconditional

mean of real GDP growth, as this mean is a function of the intercept and AR parameters

only. To provide some visual evidence, Figure 4 shows the posterior median and 68% coverage

intervals for the unconditional mean of annualized real GDP and Consumption growth, while

Figure 5 displays this same information plotted alongside the raw data. It is important to

emphasize that this is a BMA estimate, meaning that the estimates incorporate uncertainty

about lag selection, the presence of structural breaks, the location of breaks, and which

parameters break. For both real GDP and real Consumption growth, the posterior median

shows significant downward drift over time, with small reductions visible in the mid 1980s

and early 2000s, and a larger reduction visible in the mid 2000s. The sum of these reductions

are relatively large, on the order of 0.5 of an annualized percentage point for real GDP. Thus,

our BMA procedure provides evidence in favor of changes in trend growth rates in the U.S.

economy, although this evidence is consistent with breaks in the 2000s rather than a break

in the early 1970s.

The BMA results provide little evidence for changes in the natural rate of unemployment,

12As just two examples in this large literature, see Perron (1989) and Bai, Lumsdaine and Stock (1998).
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as measured by the unconditional mean of the unemployment rate. As shown in Figures 4

and 5, the posterior median displays very little change over time. Consistent with Staiger,

Stock and Watson (1997), the 68% coverage intervals are relatively large, suggesting the

natural rate is a difficult concept to measure empirically. This is consistent with the results

from Table 9, which found that a model with no breaks in intercept or AR parameters

received substantially higher posterior probability than models with such breaks.

We now turn to evidence on changes in the dynamics of post-war U.S. inflation rates,

which is the focus of a substantial existing literature. In particular, Cogley and Sargent

(2001) argue that the persistence of shocks to the U.S. inflation rate have varied considerably

over the post-war sample period, being lower prior to the “great inflation” and after the

Volcker disinflation, and higher between these episodes. The Cogley and Sargent results

are consistent with earlier work by Barsky (1987) and Evans and Wachtel (1993), which

documented variation in inflation persistence. However, the Cogley and Sargent results were

challenged by Pivetta and Reis (2007) and Stock (2001). In particular, these authors argue

that evidence for shifts in persistence is not statistically significant, particularly once one

allows for shifts in the residual variance of the model for the inflation rate. A large subsequent

literature has investigated the evidence for changes in inflation persistence using a variety of

models of parameter instability, and has provided mixed results.13 The stakes in this debate

are quite high, as the stylized facts regarding inflation are key metrics often used to evaluate

the plausibility of structural macroeconomic models.

Figure 6 presents the BMA posterior median of the persistence of wage and price inflation

series. We measure persistence using the sum of the autoregressive coefficients (SAR), a

commonly used statistic recommended by Andrews and Chen (1994). Both core CPI and

core PCE inflation display increasing persistence in the mid 1960s and declining persistence

around 1990. The size of these changes is largest for core PCE inflation, for which the SAR is

very low prior to the first break, rises to a high level, and then declines dramatically after the

13See, for example, Kang, Kim and Morley (2009), Eo (2016), Stock and Watson (2007), Benati (2008), and
Giordani and Kohn (2008).
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second break. Core CPI inflation persistence displays a similar pattern with similar timing,

but the changes are less pronounced. For both series, the 1990 timing for the reduction in

inflation persistence is substantially later than the commonly held perception that inflation

persistence fell immediately after the Volcker disinflation of the early 1980s.

Figure 7 shows how the various breaks in the inflation process have translated into changes

in the unconditional mean of inflation, while Figure 8 displays this same information plotted

alongside the raw data. For both core CPI and PCE inflation, there is a substantial rise

(in the mid-1960s) and then fall (in the early 1990s) in unconditional mean, with similar

magnitudes for the increase and decrease. For core PCE inflation, these changes in uncon-

ditional mean are driven primarily by multiple changes in the SAR, as there is relatively

little evidence of breaks in intercept for this series. For core CPI inflation, these changes

are driven by both changes in the intercept and AR parameters. Finally, Figures 6 and 7

also show evidence for breaks in persistence and unconditional mean of wage inflation. For

this series, changes in persistence are fairly small, and persistence is relatively high over the

whole sample. However, we see a large drop in the unconditional mean of wage inflation in

the early 1980s. This change is driven primarily by breaks in the intercept of the process.

Finally, we use our procedure to re-evaluate the evidence for the Great Moderation in U.S.

macroeconomic time series. As was first documented in McConnell and Perez-Quiros (2000)

and Kim and Nelson (1999), there is substantial evidence for a reduction in the volatility of

measures of production growth occurring in the early 1980s. This reduction in volatility is

also observed in measures of inflation, as well as in labor market variables. More recently,

some authors have questioned whether the Great Recession signaled the end of the Great

Moderation.14 Figure 9 shows the BMA posterior median for the unconditional variance of

each series in our sample, plotted alongside the raw data. Beginning with the production

series, we see the standard result that a large and sharp reduction in volatility occurred in

the mid 1980s in real GDP growth. This reduction is also seen in real Investment growth

14See, for example Charles, Darné and Ferrara (2018).
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and real Consumption growth, although the decline in Consumption growth volatility occurs

in the early 1990s. For real Investment growth, there is a short-lived increase in volatility

associated with the start of the Great Recession, but this is immediately reversed at the

end of the recession, with volatility returning to an even lower level than the pre-Great

Recession period. Thus, the original nature and timing of the Great Moderation appears to

be confirmed by our BMA results, and our results suggest that the Great Moderation did

not end with the Great Recession.

Turning to the inflation series, we observe an increase in volatility of price inflation

variables in the early 1970s, followed by declines in volatility during the 1980s and early

1990s. Interestingly, wage inflation volatility experiences an increase and decline that is

dated earlier, and largely completed by 1975. Finally, the volatility of labor market variables

follows a similar pattern to the price inflation variables, with an increase in volatility during

the 1970s, a decline in volatility in the mid 1980s, and, for employment growth, a brief burst

in volatility during the Great Recession.

Our results also speak to the role of “good luck” vs. “good policy” in generating the

Great Moderation. First, the BMA results suggest important mean and persistence shifts in

U.S. inflation series that have served to lower both the level and volatility of inflation. Such

shifts are commonly interpreted as evidence in favor of improved monetary policy having a

role in generating improved inflation outcomes. In contrast, there appears to be almost no

evidence for changes in the AR parameters of real variables, such as real GDP growth or

employment growth, over any part of the sample. Instead, the Great Moderation in these

variables seems to be accounted for entirely by reductions in conditional volatility. These

results are largely consistent with the findings of the existing Great Moderation literature,

such as Stock and Watson (2002), Ahmed, Levin and Wilson (2004), and Sensier and van

Dijk (2004).

It is important to remember that our results are obtained where we allow for uncertainty

regarding which parameters change, including individual AR parameters. This is in contrast
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to much of the Great Moderation literature that forces all conditional mean parameters as a

block to change, which would reduce power to detect changes in dynamics if these manifest

in only certain parameters. Thus, while our results for the sources of the Great Moderation

are largely consistent with the received literature, they provide some additional credibility

to these existing findings.

6 Conclusion

We have investigated the evidence for structural changes in the parameters of autore-

gressive models for U.S. macroeconomic time series, including series measuring production

growth, inflation, and labor market conditions. To account for the substantial a priori uncer-

tainty associated with the correct specification for such models, we have developed a feasible

approach to conduct Bayesian Model Averaging for autoregressive models with structural

changes, where the model space encompasses lag selection, the number of structural changes,

and the type of each structural change. Using an extensive Monte Carlo experiment, we find

that the proposed procedure performs very well for identifying the correct autoregressive lag

structure, and the correct number and types of structural changes.

Our results suggest overwhelming evidence of structural breaks for all U.S. macroeco-

nomic series that we consider over the post-war sample period. For most series, there are

multiple structural breaks detected. We find ubiquitous evidence for at least one, and often

multiple, breaks in conditional variance parameters, and for price inflation series we find

evidence of substantial changes in autoregressive slope parameters. For most series we find

mixed evidence for breaks in the intercept parameter, with posterior probability spread out

across models with no break in intercept and models with a single break in intercept.

We use our procedure to provide Bayesian Model Averaged evidence on a variety of

macroeconomic phenomena, including changes in the trend growth rate of real GDP, changes

in the natural rate of unemployment, changes in the level and persistence of inflation, and
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the continuation of the so-called macroeconomic “Great Moderation”. We find evidence for

substantive reductions in the trend growth rate of real GDP that occurred during the 2000s,

but find little evidence for changes in the natural rate of unemployment. We find strong

evidence for changes over time in the persistence of core inflation series, with this persistence

rising during the 1960s and falling around 1990. Finally, our results suggest that the Great

Moderation is alive and well, notwithstanding a burst in volatility associated with the Great

Recession.
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Appendix: Posterior Sampler for Model Space

In this appendix we describe the details of our two-block Metropolis-Hastings Sampler to

obtain draws from Pr (M, τ |Y ), or equivalently Pr (p,m,R, τ |Y ). Define a (p? + 2) column

vector ψt holding each of the potential time-varying parameters at time t:

ψt = (αt, φ1,t, φ2,t, . . . , φp?,t, ht)
′

where φj,t = 0, ∀t, if yt−j is not included in the model. Next, define a (p? + 2) column

vector At whose ith element is 1 if the ith parameter in ψt undergoes a break at time t and

is zero otherwise. Finally, define a (p? + 2) × T matrix A, which holds the At vectors for

t = 1, . . . , T :

A = [A1, A2, . . . , AT ]

A choice of the matrix A, subject to the minimum distance constraints in (3), is equivalent

to a choice of {m,R, τ}. Each At indicates whether a structural break occurs at time t, as

well as which variables experience a break on this date. The entirety of the A matrix then

indicates the number of breaks (m), the location of breaks (τ), and which parameters change

at each break date (R). Our target distribution from which to obtain draws can then be

written as Pr (p,m,R, τ |Y ) = Pr (p,A|Y ). Our two-block Metropolis-Hastings Sampler will

proceed by sampling iteratively from the following two conditional posterior distributions:

Pr (p|A, Y )

Pr (A|p, Y )

Sampling from Pr (p|A, Y )

To sample from Pr (p|A, Y ) we use a Metropolis-Hastings step that is based on the MC3

algorithm of Madigan and York (1995). Given the previous draw of p, denoted p[g], we

generate a proposal for p, denoted p′ by randomly selecting with equal probability from all
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possible values of p ranging from 0 to p?.15 Given this proposal, we compute the Metropolis-

Hastings acceptance probability:

α (g, ′) = min

(
f(Y |p′, A) Pr (p′, A)

f(Y |p[g], A) Pr (p[g], A)
, 1

)
(A.1)

p[g+1] is then set equal to p′ with probability equal to (A.1). Otherwise, p[g+1] = p[g].

The Metropolis-Hastings acceptance probability is calculated as follows. First, the prior

probabilities, Pr (p,A), are factored as:

Pr (p,A) = Pr (p,m,R, τ) = Pr (τ |p,m,R) Pr (p,m,R) ,

where Pr (τ |p,m,R) and Pr (p,m,R) are calculated as in (8) and (9). Second, the marginal

likelihood, f (Y |p,A) is calculated using one of two strategies. Note that conditional on p

and A, the structural break model is simply a Normal linear regression model with known

regressor matrix and, potentially, a disturbance variance that changes at known dates. In the

case where there are no structural changes in disturbance variance, the marginal likelihood

is available analytically:

f(Y |p,A) = t
(
Y |Ξµ,m−1 (ΞV Ξ′ + IT ) , b

)
, (A.2)

where Ξ = [ιT Z] and t (Y |l, k, v) denotes the probability density function of a T -variate

multivariate student-t distribution with location vector l, scale matrix k and degrees of

freedom v. In the case where there are structural changes in disturbance variance, the

marginal likelihood is no longer available analytically. However, there are a number of

15Two aspects of this proposal deserve further comment. First, the proposal distribution is symmetric, such
that the probability of proposing a move from p′ to p[g] is equal to the probability of proposing a move from
p[g] to p′. Second, the proposal allows internally inconsistent models to be proposed if an autoregressive
lag is removed in the proposal, but the A matrix indicates that the parameter on this autoregressive lag
undergoes breaks. As discussed in Section 3.2, such a model will receive zero prior weight, and will thus
receive zero probability of acceptance by the Metropolis-Hastings sampler.
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approaches that provide very accurate estimates of the marginal likelihood for such a model

with little computational expense. Here, we use the approach of Chib (1995), which is based

on simulations from the Gibbs Sampler applied to the linear regression model. For the linear

regression model with structural changes in disturbance variance of known timing, and the

parameter priors discussed above, Chib’s approach can be implemented using only a single

Gibbs run. In untabulated Monte Carlo experiments using a linear regression model with

10 regressors, 5 breaks in disturbance variance, and a sample size of 200, we found that

the procedure produced estimates of the log marginal likelihood across 1000 separate Gibbs

runs that were never more than 0.12% apart, even when using a very small number of total

Gibbs simulations (100 simulations following 10 burn-in simulations).16 Such a small number

of Gibbs simulations can be produced in approximately one-100th of a second at current

computing speeds, making use of the Chib approach as a step in the Metropolis-Hastings

sampler feasible.

Sampling from Pr (A|p, Y )

To sample from Pr (A|p, Y ) we again use a Metropolis-Hastings step. Given the previous

draw of A, denoted A[g], we generate a proposal, denoted A′, by randomly selecting with

equal probability from one of two proposal densities, labeled q1

(
A|A[g]

)
and q2

(
A|A[g]

)
. The

first proposal can remove a single existing structural break, can move the timing and / or

change which parameters change at a single existing structural break, or can add a single

new structural break:

q1

(
A|A[g]

)
1. Randomly select with equal probability a contiguous block of size b from A[g].

2. Replace this block with a block of size b that indicates at most one break date, chosen

16These results are consistent with the Monte Carlo simulations reported in Bos (2002), which demonstrate
the Chib (1995) approach provides accurate and robust estimates of the marginal likelihood for the linear
regression model.
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with equal probability from the set of all possible such blocks. The resulting A matrix

is A′.

In experiments, we found that relying only on q1

(
A|A[g]

)
produced a sampler that would

quickly explore areas of high probability in terms of the number and type of breaks, but

was slow to explore high probability regions for the timing of structural breaks. The second

proposal is designed to improve the sampler in this dimension, by proposing moves in the

location of perhaps multiple existing breaks, without changing which parameters change at

each break. Define m[g] as the number of breaks indicated by A[g], and let Ãi be a window

of A around the ith break date:

Ãi = {Aτi−4, Aτi−3, Aτi−2, Aτi−1, Aτi+1, Aτi+2, Aτi+3, Aτi+4}

The second proposal then proceeds as follows:

q2

(
A|A[g]

)
1. Randomly select a number of breaks to move, denoted m̃, from 0, 1, . . . ,m[g].

2. For each i = 1, . . . , m̃, replace with equal probability one of the columns in Ãi with

the current value of Aτi . Then, replace Aτi with a vector of zeros. After these m̃

replacements are made, the resulting A matrix is A′.

Once a proposal is generated, it is accepted or rejected based on the Metropolis-Hastings

acceptance probability:

α (g, ′) = min

(
f(Y |p,A′) Pr (p,A′)

f(Y |p,A[g]) Pr (p,A[g])
, 1

)
(A.3)

which is computed as described in the previous section of this appendix.17

17Each of the proposal densities are symmetric, such that the probability of proposing a move from A′ to
A[g] is equal to the probability of proposing a move from A[g] to A′. Again, if an internally inconsistent
model is proposed, this model will receive zero prior weight and will be rejected by the Metropolis-Hastings
sampler.
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Table 1
Monte Carlo Data Generating Processes

Regime 1 Regime 2 Regime 3
(75 periods) . (75 periods) (76 periods)

No Break
Intercept 0.0 0.0 0.0

AR(1) 0.9 0.9 0.9
AR(2) 0.0 0.0 0.0

Variance 1.0 1.0 1.0

Intercept Small
Intercept 0.7 0.0 -0.7

AR(1) 0.3 0.3 0.3
AR(2) 0.0 0.0 0.0

Variance 1.0 1.0 1.0

Intercept Large
Intercept 1.4 0.0 -1.4

AR(1) 0.3 0.3 0.3
AR(2) 0.0 0.0 0.0

Variance 1.0 1.0 1.0

Persistence
Intercept 0.3 0.3 0.3

AR(1) 0.6 1.2 0.6
AR(2) -0.3 -0.3 -0.3

Variance 0.5 0.5 0.5

Intercept / Variance
Intercept 0.3 2.1 0.3

AR(1) 0.6 0.6 0.6
AR(2) -0.3 -0.3 -0.3

Variance 0.5 2.65 0.5
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Table 2
Posterior Inclusion Probabilities for Autoregressive Lags

Autoregressive No Break Intercept Intercept Persistence Intercept /
Lag Small Large Variance

1 100 86 83 100 100
2 2 1 1 95 93
3 0 0 0 3 1
4 0 0 0 0 0
5 0 0 0 0 0
6 0 0 0 0 0

Notes: Results shown are averages across Monte Carlo simulations. Bold type in a column
indicates an autoregressive lag that is present in the DGP for that column.

Table 3
Posterior Probability for Alternative Numbers of Structural Breaks

Number of No Break Intercept Intercept Persistence Intercept /
Breaks Small Large Variance

0 91 0 0 1 0
1 9 52 0 1 0
2 0 44 88 87 78
3 0 3 11 11 20
4 0 0 1 1 2
> 4 0 0 0 0 0

Notes: Results shown are averages across Monte Carlo simulations. Bold type in a column
indicates the true number of structural breaks present in the DGP for that column.
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Table 4
Mean Number of Structural Breaks in Individual Model Parameters

Parameter No Break Intercept Intercept Persistence Intercept /
Small Large Variance

Intercept 0.07 (0) 1.48 (2) 2.09 (2) 0.10 (0) 2.04 (2)
AR(1) 0.01 (0) 0.05 (0) 0.05 (0) 1.98 (2) 0.08 (0)
AR(2) 0.00 (0) 0.00 (0) 0.00 (0) 0.06 (0) 0.04 (0)
AR(3) 0.00 (0) 0.00 (0) 0.00 (0) 0.01 (0) 0.00 (0)
AR(4) 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0)
AR(5) 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0)
AR(6) 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0)

Variance 0.02 (0) 0.03 (0) 0.05 (0) 0.04 (0) 2.04 (2)

Notes: Results shown are averages across Monte Carlo simulations. Entries in parentheses
give the true number of structural breaks for the respective parameter and DGP. Bold type
in a column indicates a parameter that experienced structural breaks in the DGP for that
column.

Table 5
Average RMSE of Parameter Estimates

Parameter No Break Intercept Intercept Persistence Intercept /
Small Large Variance

Intercept 0.07 0.25 0.24 0.06 0.23
AR(1) 0.03 0.09 0.09 0.12 0.06
AR(2) 0.00 0.00 0.00 0.07 0.07
AR(3) 0.00 0.00 0.00 0.00 0.00
AR(4) 0.00 0.00 0.00 0.00 0.00
AR(5) 0.00 0.00 0.00 0.00 0.00
AR(6) 0.00 0.00 0.00 0.00 0.00

Notes: RMSE is the root mean squared error of the Bayesian posterior mean from the true
parameter value, calculated from t = 1, . . . , T for a single Monte Carlo simulation. Average
RMSE is the RMSE averaged across Monte Carlo simulations.
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Table 6
Data Series

Series Name Mnemonic Transformation Sample

Wages and Prices
Hourly Earnings of Production AHETPI Growth Rates 1964:Q2 - 2018:Q2
and Nonsupervisory Employees

Consumer Price Index: CPILFESL Growth Rates 1959:Q1 - 2018:Q2
Excluding Food and Energy

Personal Consumption Expenditures PCEPILFE Growth Rates 1959:Q2 - 2018:Q2
Price Index: Excluding Food and Energy

Production
Real Gross Domestic Product GDPC1 Growth Rates 1959:Q1 - 2018:Q2

Real Gross Private Domestic Investment GPDIC1 Growth Rates 1959:Q1 - 2018:Q2

Real Personal Consumption Expenditures PCECC96 Growth Rates 1959:Q1 - 2018:Q2

Employment
Total Nonfarm Payroll Employment PAYEMS Growth Rates 1959:Q1 - 2018:Q2

Civilian Unemployment Rate UNRATE Levels 1959:Q1 - 2018:Q2

Notes: All data series were obtained from the Federal Reserve Economic Database (FRED):
https://fred.stlouisfed.org. Mnemonics refer to FRED series identifiers.
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Table 7
Posterior Inclusion Probabilities for Autoregressive Lags

Series Name Autoregressive Lag
1 2 3 4 5 6

Wages and Prices
Hourly Earnings of Production 100 100 17 0 0 0
and Nonsupervisory Employees

Consumer Price Index: 100 100 0 0 0 0
Excluding Food and Energy

Personal Consumption Expenditures 100 3 0 0 0 0
Price Index: Excluding Food and Energy

Production
Real Gross Domestic Product 100 52 0 0 0 0

Real Gross Private Domestic Investment 1 0 0 0 0 0

Real Personal Consumption Expenditures 100 99 73 0 0 0

Employment
Total Nonfarm Payroll Employment 100 3 0 0 0 0

Civilian Unemployment Rate 100 100 6 0 0 0
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Table 8
Posterior Probability of Alternative Numbers of Structural Breaks

Series Name Number of Breaks
0 1 2 3 4 5 6 > 6

Wages and Prices
Hourly Earnings of Production 0 4 22 39 34 1 0 0
and Nonsupervisory Employees

Consumer Price Index: 0 0 13 29 54 4 0 0
Excluding Food and Energy

Personal Consumption Expenditures 0 0 0 0 85 15 0 0
Price Index: Excluding Food and Energy

Production
Real Gross Domestic Product 0 48 49 2 0 0 0 0

Real Gross Private Domestic Investment 0 1 1 86 13 0 0 0

Real Personal Consumption Expenditures 0 60 38 2 0 0 0 0

Employment
Total Nonfarm Payroll Employment 0 0 0 65 34 0 0 0

Civilian Unemployment Rate 8 15 67 10 0 0 0 0

Notes: Probabilities may not sum to one due to rounding.
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Table 9
Posterior Probability of Alternative Numbers of Structural Breaks in Intercept,

Autoregressive Parameters and Conditional Variance

Series Name Intercept AR Variance
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Wages and Prices
Hourly Earnings of Production 43 52 4 0 0 48 52 1 0 0 0 4 43 53 0
and Nonsupervisory Employees

Consumer Price Index: 36 55 10 0 0 22 64 13 0 0 0 0 100 0 0
Excluding Food and Energy

Personal Consumption Expenditures 71 26 2 0 0 0 0 75 24 1 0 0 100 0 0
Price Index: Excluding Food and Energy

Production
Real Gross Domestic Product 50 47 2 0 0 99 1 0 0 0 0 90 10 0 0

Real Gross Private Domestic Investment 79 20 1 0 0 100 0 0 0 0 0 1 1 94 5

Real Personal Consumption Expenditures 57 39 4 0 0 98 2 0 0 0 0 99 1 0 0

Employment
Total Nonfarm Payroll Employment 84 16 1 0 0 97 3 0 0 0 0 0 0 69 31

Civilian Unemployment Rate 77 22 1 0 0 99 1 0 0 0 8 16 73 3 0

Notes: Probabilities may not sum to one due to rounding. For all series, zero posterior probability was placed on models with
more than four breaks in a single parameter category (intercept, autoregressive parameters, or conditional variance.)
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Figure 1
Probability of Structural Break in Intercept Parameter

1970 1980 1990 2000 2010

Unemployment Rate

Employment Growth

Real PCE Growth

Real Investment Growth

Real GDP Growth

Core PCE Inflation

Core CPI Inflation

Hourly Earnings Growth

Notes: The distance between adjacent horizontal lines represents 100% posterior probability.
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Figure 2
Probability of Structural Break in AR Parameters

1970 1980 1990 2000 2010

Unemployment Rate

Employment Growth

Real PCE Growth

Real Investment Growth

Real GDP Growth

Core PCE Inflation

Core CPI Inflation

Hourly Earnings Growth

Notes: The distance between adjacent horizontal lines represents 100% posterior probability.
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Figure 3
Probability of Structural Break in Conditional Variance Parameter

1970 1980 1990 2000 2010

Unemployment Rate

Employment Growth

Real PCE Growth

Real Investment Growth

Real GDP Growth

Core PCE Inflation

Core CPI Inflation

Hourly Earnings Growth

Notes: The distance between adjacent horizontal lines represents 100% posterior probability.
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Figure 4
BMA Unconditional Mean of Real GDP Growth, Real PCE Growth and the

Unemployment Rate
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Figure 5
BMA Unconditional Mean of Real GDP Growth, Real PCE Growth and the

Unemployment Rate
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Figure 6
BMA Sum of Autoregressive Coefficients for Inflation Series
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Figure 7
BMA Unconditional Mean of Annualized Inflation
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Figure 8
BMA Unconditional Mean of Annualized Inflation
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Figure 9
BMA Unconditional Standard Deviation of All Series
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