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1 Introduction

This appendix describes additional Monte Carlo experiments conducted for the Bayesian

model averaging (BMA) procedure proposed in Check and Piger (2020), “Structural Breaks

in U.S. Macroeconomic Time Series: A Bayesian Model Averaging Approach.” These Monte

Carlo experiments investigate additional data generating processes (DGP) over those con-

sidered in Check and Piger (2020), and in particular focus on DGPs that are mis-specified

in some dimension from the finite-order autoregressive (AR) model with structural breaks

assumed by their BMA procedure. For each DGP, 100 series of size T = 226 are generated,

and the BMA procedure assuming an autoregressive (AR) process with parameter breaks

is applied to each series. All details of the implementation of the BMA procedure are as

described in Section 4 of Check and Piger (2020). In the following we describe each of the
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DGPs considered and report the results of the associated Monte Carlo experiment. The

results presented are averages across the 100 Monte Carlo simulations.

2 ARMA Data Generating Process

In this section we describe results from a DGP that is an ARMA(1,1) with structural

breaks in intercept:

yt = αt + φyt−1 + θεt−1 + εt, t = 1, 2, . . . , T

εt ∼ i.i.d. N
(
0, h−1

)

where αt undergoes two structural breaks approximately 1/3 and 2/3 through the sample.

The size of the structural breaks is calibrated as for the “Intercept Large” case described

in Section 4 of Check and Piger (2020). We set the autoregressive and moving average

parameters to φ = 0.3 and θ = 0.3 respectively. Finally, the value of h is set to match the

unconditional variance of yt for the “Intercept Large” case described in Section 4 of Check

and Piger (2020). All parameter values used in the DGP are detailed in the top panel of

Table 1.

The results of this Monte Carlo experiment are detailed in the second columns of Tables 2-

4. Table 2 shows the posterior inclusion probability for alternative numbers of autoregressive

lags. For the ARMA DGP, the BMA procedure selects the first lag with 100% posterior

probability, but places very low posterior probability on higher order lags. As this ARMA

model has an AR(∞) representation with non-trivial AR lags beyond order one, this suggests

that the BMA procedure underfits the dynamics of the true DGP. However, from Tables 3-4,

we see that this underfitting does not affect the ability of the BMA procedure to detect

the number and nature of structural breaks. Specifically, Table 3 shows that the BMA

procedure places 92% posterior probability on the correct number of structural breaks, while

Table 4 shows that this posterior probability is placed nearly entirely on structural breaks
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in intercept, with almost no evidence found for structural breaks in any other parameters.

3 Markov-Switching Data Generating Process

In this section we describe results from a DGP that is an AR(1) process with Markov-

switching intercept:

yt = αSt + φyt−1 + εt, t = 1, 2, . . . , T

εt ∼ i.i.d. N
(
0, h−1

)
where αSt = α0(1 − St) + α1(St) and St ∈ {0, 1} follows a two state Markov process with

transition probabilities p00 = Pr(St = 0|St−1 = 0) and p11 = Pr(St = 1|St−1 = 1). To set

the parameters of the model, we use the values reported in Table 4.1 of Kim and Nelson

(1999) from their fitting of this model to U.S. real GDP growth. In Kim and Nelson (1999),

the Markov-switching fits U.S. recession and expansion dates closely, giving St = 0 the

interpretation of a normal growth expansion regime and St = 1 the interpretation of a low

growth recession regime. In the DGP, there are no structural breaks in any of the model

parameters. All parameter values used in the DGP are detailed in the middle panel of Table

1.

The results of this Monte Carlo experiment are detailed in the third columns of Tables 2-

4. Table 2 shows the posterior inclusion probability for alternative numbers of autoregressive

lags. For the Markov-switching DGP, the BMA procedure places 19% posterior probability

on the first lag, and places very low posterior probability on higher order lags. In the true

DGP, the AR(1) parameter is only 0.1, so the relatively low posterior probability placed on

this lag is not surprising. From Table 3, we see that the BMA procedure detects the absence

of structural breaks very accurately. Specifically, Table 3 shows that the BMA procedure

places 99% posterior probability on the model with no structural breaks.
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4 Stochastic Volatility Data Generating Process

In this section we describe results from a DGP that is an AR(1) process with stochastic

volatility:

yt = α + φyt−1 + εt

εt ∼ i.i.d. N (0, exp {ht})

ht = ht−1 + ηt

ηt ∼ i.i.d. N(0, γ2)

We parameterize the volatility process to be persistent with relatively small variance changes.

This produces a volatility process that drifts slowly over time, in order to separate the

stochastic volatility process conceptually from that of a structural break process. In the

DGP, there are no structural breaks in any of the model parameters. All parameter values

used in the DGP are detailed in the bottom panel of Table 1.

The results of this Monte Carlo experiment are detailed in the fourth columns of Tables 2-

4. Table 2 shows the posterior inclusion probability for alternative numbers of autoregressive

lags. For the stochastic volatility DGP, the BMA procedure places 100% posterior probability

on the first lag, and places zero posterior probability on higher order lags. Thus, it places

100% posterior probability on the true AR(1) process. From Table 3, we see that the BMA

procedure also detects the absence of structural breaks very accurately. Specifically, Table

3 shows that the BMA procedure places 97% posterior probability on the model with no

structural breaks.
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Table 1
Monte Carlo Data Generating Processes — Misspecified Models

Regime 1 Regime 2 Regime 3

ARMA with Intercept Breaks
αt 1.4 0.0 -1.4
φ 0.3 0.3 0.3
θ 0.3 0.3 0.3
h−1 0.81 0.81 0.81

Markov Switching
α0 0.92 —
α1 -0.21 —
φ 0.1 —
h−1 0.64 —
p00 0.90 —
p11 0.76 —

Stochastic Volatility
α 0.0 — —
φ 0.3 — —
γ 0.01 — —
exp(h0) 1.0 — —
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Table 2
Posterior Inclusion Probabilities for Autoregressive Lags

Autoregressive ARMA Markov Stochastic
Lag Switching Volatility

1 100 19 100
2 3 0 1
3 0 0 0
4 0 0 0
5 0 0 0
6 0 0 0

Notes: Results shown are averages across Monte Carlo simulations. Bold type in a column
indicates an autoregressive lag that is present in the DGP for that column.

Table 3
Posterior Probability for Alternative Numbers of Structural Breaks

Number of ARMA Markov Stochastic
Breaks Switching Volatility

0 0 99 97
1 8 1 2
2 92 0 1
3 0 0 0
4 0 0 0
> 4 0 0 0

Notes: Results shown are averages across Monte Carlo simulations. Bold type in a column
indicates the true number of structural breaks present in the DGP for that column.
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Table 4
Mean Number of Structural Breaks in Individual Model Parameters

Parameter ARMA Markov Stochastic
Switching Volatility

Intercept 1.92 (2) 0.01 (0) 0.03 (0)
AR(1) 0.01 (0) 0.00 (0) 0.01 (0)
AR(2) 0.00 (0) 0.00 (0) 0.00 (0)
AR(3) 0.00 (0) 0.00 (0) 0.00 (0)
AR(4) 0.00 (0) 0.00 (0) 0.00 (0)
AR(5) 0.00 (0) 0.00 (0) 0.00 (0)
AR(6) 0.00 (0) 0.00 (0) 0.00 (0)

Variance 0.03 (0) 0.02 (0) 0.01 (0)

Notes: Results shown are averages across Monte Carlo simulations. Entries in parentheses
give the true number of structural breaks for the respective parameter and DGP. Bold type
in a column indicates a parameter that experienced structural breaks in the DGP for that
column.
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